Nuprl Lemma : stream-extensionality
∀[A:Type]. ∀[x,y:stream(A)].  x = y ∈ stream(A) supposing ∀n:ℕ. (s-nth(n;x) = s-nth(n;y) ∈ A)
Proof
Definitions occuring in Statement : 
s-nth: s-nth(n;s)
, 
stream: stream(A)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
s-nth: s-nth(n;s)
, 
s-cons: x.s
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
has-value: (a)↓
Lemmas referenced : 
stream-coinduction, 
all_wf, 
nat_wf, 
equal_wf, 
s-nth_wf, 
stream_wf, 
false_wf, 
le_wf, 
stream-decomp, 
stream-subtype, 
top_wf, 
s_hd_cons_lemma, 
s-hd_wf, 
decidable__le, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
s_tl_cons_lemma, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_antisymmetry_iff, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
add-subtract-cancel, 
value-type-has-value, 
set-value-type, 
int-value-type, 
s-tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
cumulativity, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
applyEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
callbyvalueReduce, 
sqleReflexivity, 
addEquality, 
setElimination, 
rename, 
unionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
intEquality, 
minusEquality, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}[A:Type].  \mforall{}[x,y:stream(A)].    x  =  y  supposing  \mforall{}n:\mBbbN{}.  (s-nth(n;x)  =  s-nth(n;y))
Date html generated:
2017_04_14-AM-07_47_26
Last ObjectModification:
2017_02_27-PM-03_17_36
Theory : co-recursion
Home
Index