Nuprl Lemma : stream-extensionality

[A:Type]. ∀[x,y:stream(A)].  y ∈ stream(A) supposing ∀n:ℕ(s-nth(n;x) s-nth(n;y) ∈ A)


Proof




Definitions occuring in Statement :  s-nth: s-nth(n;s) stream: stream(A) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B prop: guard: {T} nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A subtype_rel: A ⊆B top: Top s-nth: s-nth(n;s) s-cons: x.s eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T true: True bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b has-value: (a)↓
Lemmas referenced :  stream-coinduction all_wf nat_wf equal_wf s-nth_wf stream_wf false_wf le_wf stream-decomp stream-subtype top_wf s_hd_cons_lemma s-hd_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel s_tl_cons_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_antisymmetry_iff eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel value-type-has-value set-value-type int-value-type s-tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality hypothesis cumulativity independent_isectElimination lambdaFormation independent_pairFormation because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination dependent_set_memberEquality natural_numberEquality applyEquality voidElimination voidEquality independent_functionElimination callbyvalueReduce sqleReflexivity addEquality setElimination rename unionElimination productElimination imageMemberEquality baseClosed imageElimination intEquality minusEquality equalityElimination dependent_pairFormation promote_hyp instantiate

Latex:
\mforall{}[A:Type].  \mforall{}[x,y:stream(A)].    x  =  y  supposing  \mforall{}n:\mBbbN{}.  (s-nth(n;x)  =  s-nth(n;y))



Date html generated: 2017_04_14-AM-07_47_26
Last ObjectModification: 2017_02_27-PM-03_17_36

Theory : co-recursion


Home Index