Nuprl Lemma : s-nth_wf

[A:Type]. ∀[n:ℕ]. ∀[s:stream(A)].  (s-nth(n;s) ∈ A)


Proof




Definitions occuring in Statement :  s-nth: s-nth(n;s) stream: stream(A) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: s-nth: s-nth(n;s) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True pi1: fst(t) s-hd: s-hd(s) bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b has-value: (a)↓ s-cons: x.s
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf stream_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf s-hd_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_weakening eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int value-type-has-value int-value-type stream-decomp stream-subtype top_wf s-tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity callbyvalueReduce sqleReflexivity unionElimination independent_pairFormation productElimination addEquality applyEquality voidEquality intEquality minusEquality because_Cache universeEquality equalityElimination dependent_pairFormation promote_hyp instantiate

Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:stream(A)].    (s-nth(n;s)  \mmember{}  A)



Date html generated: 2017_04_14-AM-07_47_13
Last ObjectModification: 2017_02_27-PM-03_17_12

Theory : co-recursion


Home Index