Nuprl Lemma : pseudo-bounded-is-bounded

[S:{S:Type| S ⊆r ℕ]. ∀m:S. (pseudo-bounded(S)  ⇃(∃B:ℕ. ∀n:S. (n ≤ B)))


Proof




Definitions occuring in Statement :  pseudo-bounded: pseudo-bounded(S) quotient: x,y:A//B[x; y] nat: subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T sq_stable: SqStable(P) squash: T pseudo-bounded: pseudo-bounded(S) exists: x:A. B[x] and: P ∧ Q prop: uimplies: supposing a so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B int_upper: {i...} so_apply: x[s] guard: {T} le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A pi1: fst(t) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b lelt: i ≤ j < k iff: ⇐⇒ Q rev_implies:  Q less_than: a < b
Lemmas referenced :  sq_stable__subtype_rel nat_wf weak-continuity-truncated subtype_rel_wf squash_wf pseudo-bounded_wf exists_wf all_wf int_upper_wf less_than_wf int_upper_subtype_nat subtype_rel_transitivity equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self le_wf implies-quotient-true imax_wf imax_nat nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf less_than'_wf ifthenelse_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_properties intformless_wf int_formula_prop_less_lemma set_subtype_base int_subtype_base assert_wf bnot_wf not_wf imax_ub bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis independent_functionElimination sqequalRule imageMemberEquality hypothesisEquality baseClosed imageElimination promote_hyp productElimination setElimination rename dependent_set_memberEquality independent_pairFormation productEquality cumulativity dependent_functionElimination independent_isectElimination setEquality universeEquality functionEquality applyEquality functionExtensionality lambdaEquality intEquality natural_numberEquality dependent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll independent_pairEquality axiomEquality equalityElimination instantiate inlFormation impliesFunctionality inrFormation

Latex:
\mforall{}[S:\{S:Type|  S  \msubseteq{}r  \mBbbN{}\}  ].  \mforall{}m:S.  (pseudo-bounded(S)  {}\mRightarrow{}  \00D9(\mexists{}B:\mBbbN{}.  \mforall{}n:S.  (n  \mleq{}  B)))



Date html generated: 2017_04_17-AM-09_54_48
Last ObjectModification: 2017_02_27-PM-05_49_24

Theory : continuity


Home Index