Nuprl Lemma : strong-continuity-test-bound-prop4

M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?). ∀n:ℕ. ∀f:ℕn ⟶ ℕ. ∀b:ℕn.
  ((↑isr(strong-continuity-test-bound(M;n;f;b)))
   (∃m:ℕ(b < m ∧ m < n ∧ (↑isl(M f)) ∧ (↑isl(strong-continuity-test-bound(M;m;f;b))))))


Proof




Definitions occuring in Statement :  strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) int_seg: {i..j-} nat: assert: b isr: isr(x) isl: isl(x) less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: nat: decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) ge: i ≥  ifthenelse: if then else fi  btrue: tt isr: isr(x) assert: b bfalse: ff sq_type: SQType(T) uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q less_than: a < b cand: c∧ B
Lemmas referenced :  not-isl-assert-isr decidable__lt decidable__assert assert_of_lt_int iff_weakening_uiff iff_transitivity assert_of_eq_int assert_of_bnot eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases equal-wf-base-T lt_int_wf int_subtype_base equal-wf-base not_wf bnot_wf int_formula_prop_eq_lemma intformeq_wf eq_int_wf int_seg_subtype_nat subtype_rel_union strong-continuity-test-bound-unroll primrec-wf2 set_wf lelt_wf subtype_rel_self nat_properties false_wf int_seg_subtype subtype_rel_dep_function isl_wf less_than_wf exists_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf all_wf le_wf int_formula_prop_not_lemma intformnot_wf decidable__le nat_wf strong-continuity-test-bound_wf unit_wf2 int_seg_wf isr_wf assert_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll functionExtensionality applyEquality functionEquality dependent_set_memberEquality unionElimination productEquality introduction unionEquality equalityTransitivity equalitySymmetry baseClosed baseApply closedConclusion instantiate cumulativity independent_functionElimination impliesFunctionality

Latex:
\mforall{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?).  \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}b:\mBbbN{}n.
    ((\muparrow{}isr(strong-continuity-test-bound(M;n;f;b)))
    {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (b  <  m  \mwedge{}  m  <  n  \mwedge{}  (\muparrow{}isl(M  m  f))  \mwedge{}  (\muparrow{}isl(strong-continuity-test-bound(M;m;f;b))))))



Date html generated: 2016_05_19-PM-00_00_03
Last ObjectModification: 2016_05_17-PM-05_52_21

Theory : continuity


Home Index