Nuprl Lemma : strict-majority-or-max-property

t:ℕ. ∀L:ℤ List.
  ((∀v:ℤ
      (strict-majority-or-max(L) v ∈ ℤsupposing 
         (((t 1) ≤ ||filter(λx.(x =z v);L)||) and 
         (||L|| ((2 t) 1) ∈ ℤ)))
  ∧ (strict-majority-or-max(L) ∈ L) supposing ||L|| ≥ )


Proof




Definitions occuring in Statement :  strict-majority-or-max: strict-majority-or-max(L) l_member: (x ∈ l) length: ||as|| filter: filter(P;l) list: List nat: eq_int: (i =z j) uimplies: supposing a ge: i ≥  le: A ≤ B all: x:A. B[x] and: P ∧ Q lambda: λx.A[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] strict-majority-or-max: strict-majority-or-max(L) and: P ∧ Q cand: c∧ B uimplies: supposing a member: t ∈ T prop: uall: [x:A]. B[x] nat: subtype_rel: A ⊆B ge: i ≥  le: A ≤ B not: ¬A implies:  Q false: False uiff: uiff(P;Q) int-deq: IntDeq decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) guard: {T} l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  l_member: (x ∈ l) less_than': less_than'(a;b) strict-majority: strict-majority(eq;L) let: let ifthenelse: if then else fi  null: null(as) filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind count-repeats: count-repeats(L,eq) list_accum: list_accum nil: [] it: btrue: tt true: True cons: [a b] bfalse: ff
Lemmas referenced :  le_wf length_wf filter_wf5 eq_int_wf l_member_wf equal-wf-base-T list_subtype_base int_subtype_base less_than'_wf ge_wf list_wf nat_wf strict-majority-property int-deq_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermMultiply_wf itermConstant_wf intformle_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf subtype_base_sq unit_wf2 union_subtype_base unit_subtype_base strict-majority_wf equal_wf decidable__l_member decidable__equal_int filter_is_nil assert_wf select_wf int_seg_properties decidable__le int_seg_wf length_of_nil_lemma neg_assert_of_eq_int int_seg_subtype_nat false_wf less_than_wf equal-wf-T-base list-cases filter_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma filter_cons_lemma null_cons_lemma imax-list-member cons_wf add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut isect_memberFormation introduction hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin addEquality setElimination rename hypothesisEquality natural_numberEquality intEquality lambdaEquality setEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality independent_isectElimination multiplyEquality independent_pairFormation productElimination independent_pairEquality dependent_functionElimination voidElimination unionElimination dependent_pairFormation int_eqEquality voidEquality computeAll instantiate cumulativity unionEquality independent_functionElimination imageElimination productEquality promote_hyp hypothesis_subsumption pointwiseFunctionality

Latex:
\mforall{}t:\mBbbN{}.  \mforall{}L:\mBbbZ{}  List.
    ((\mforall{}v:\mBbbZ{}
            (strict-majority-or-max(L)  =  v)  supposing 
                  (((t  +  1)  \mleq{}  ||filter(\mlambda{}x.(x  =\msubz{}  v);L)||)  and 
                  (||L||  =  ((2  *  t)  +  1))))
    \mwedge{}  (strict-majority-or-max(L)  \mmember{}  L)  supposing  ||L||  \mgeq{}  1  )



Date html generated: 2017_04_17-AM-09_09_44
Last ObjectModification: 2017_02_27-PM-05_17_59

Theory : decidable!equality


Home Index