Nuprl Lemma : involution-has-fixpoint

n:ℕ
  ∀[T:Type]. (T ~ ℕ (∀f:T ⟶ T. ((∀x:T. ((f (f x)) x ∈ T))  ((n rem 2) 1 ∈ ℤ (∃x:T. ((f x) x ∈ T)))))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] remainder: rem m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T uimplies: supposing a nat: true: True nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) guard: {T} false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] inject: Inj(A;B;f) and: P ∧ Q cand: c∧ B squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q l_all: (∀x∈L.P[x]) int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b int_nzero: -o l_exists: (∃x∈L. P[x])
Lemmas referenced :  count-by-orbits equal-wf-T-base subtype_base_sq int_subtype_base equal-wf-base all_wf equal_wf equipollent_wf int_seg_wf nat_wf squash_wf true_wf subtype_rel_self iff_weakening_equal orbit-of-involution decidable__l_exists list_wf length_wf decidable__equal_int not-l_exists l_member_wf select_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma l_sum-sum sum_functionality length_wf_nat sum_constant sum_wf intformeq_wf int_formula_prop_eq_lemma rem-exact nequal_wf singleton-orbit hd_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_functionElimination hypothesis independent_isectElimination intEquality remainderEquality setElimination rename because_Cache natural_numberEquality instantiate cumulativity equalityTransitivity equalitySymmetry voidElimination baseClosed sqequalRule lambdaEquality applyEquality functionEquality universeEquality imageElimination imageMemberEquality productElimination independent_pairFormation unionElimination setEquality approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidEquality hyp_replacement promote_hyp dependent_set_memberEquality functionExtensionality

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}n  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x:T.  ((f  (f  x))  =  x))  {}\mRightarrow{}  ((n  rem  2)  =  1)  {}\mRightarrow{}  (\mexists{}x:T.  ((f  x)  =  x)))))



Date html generated: 2019_06_20-PM-02_18_14
Last ObjectModification: 2018_09_22-PM-11_03_20

Theory : equipollence!!cardinality!


Home Index