Nuprl Lemma : count-by-orbits

n:ℕ
  ∀[T:Type]
    (T ~ ℕn
     (∀f:T ⟶ T
          ∃orbits:T List List
           ((∀o∈orbits.orbit(T;f;o))
           ∧ (∀a:T. (∃o∈orbits. (a ∈ o)))
           ∧ (∀o1,o2∈orbits.  l_disjoint(T;o1;o2))
           ∧ no_repeats(T List;orbits)
           ∧ (n l_sum(map(λo.||o||;orbits)) ∈ ℤ)) 
          supposing Inj(T;T;f)))


Proof




Definitions occuring in Statement :  equipollent: B l_sum: l_sum(L) orbit: orbit(T;f;L) pairwise: (∀x,y∈L.  P[x; y]) l_disjoint: l_disjoint(T;l1;l2) l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| map: map(f;as) list: List inject: Inj(A;B;f) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q uimplies: supposing a member: t ∈ T inject: Inj(A;B;f) prop: nat: equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) and: P ∧ Q subtype_rel: A ⊆B int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q guard: {T} not: ¬A false: False finite-type: finite-type(T) so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top lelt: i ≤ j < k true: True squash: T iff: ⇐⇒ Q rev_implies:  Q l_all: (∀x∈L.P[x]) orbit: orbit(T;f;L)
Lemmas referenced :  equal_wf equipollent_inversion int_seg_wf decidable__int_equal not_wf orbit-decomp2 surject_wf exists_wf l_all_wf list_wf l_member_wf orbit_wf all_wf l_exists_wf pairwise_wf2 l_disjoint_wf no_repeats_wf l_sum_wf map_wf length_wf inject_wf equipollent_wf nat_wf nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le int_seg_properties intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf subtype_rel_list top_wf length_wf_nat concat_wf squash_wf true_wf length-concat iff_weakening_equal equipollent-nsub equipollent_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent-iff-list no_repeats-concat member-concat l_exists_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis extract_by_obid isectElimination cumulativity applyEquality functionExtensionality rename natural_numberEquality setElimination because_Cache independent_functionElimination productElimination unionElimination inlFormation inrFormation hyp_replacement equalitySymmetry applyLambdaEquality intEquality voidElimination dependent_pairFormation functionEquality independent_isectElimination independent_pairFormation productEquality setEquality universeEquality instantiate equalityTransitivity int_eqEquality isect_memberEquality voidEquality computeAll dependent_set_memberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}n
        {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T
                    \mexists{}orbits:T  List  List
                      ((\mforall{}o\mmember{}orbits.orbit(T;f;o))
                      \mwedge{}  (\mforall{}a:T.  (\mexists{}o\mmember{}orbits.  (a  \mmember{}  o)))
                      \mwedge{}  (\mforall{}o1,o2\mmember{}orbits.    l\_disjoint(T;o1;o2))
                      \mwedge{}  no\_repeats(T  List;orbits)
                      \mwedge{}  (n  =  l\_sum(map(\mlambda{}o.||o||;orbits)))) 
                    supposing  Inj(T;T;f)))



Date html generated: 2017_04_17-AM-09_33_28
Last ObjectModification: 2017_02_27-PM-05_32_42

Theory : equipollence!!cardinality!


Home Index