Nuprl Lemma : orbit-of-involution

[T:Type]. ∀[f:T ⟶ T].
  ∀o:T List. (||o|| 1 ∈ ℤ) ∨ (||o|| 2 ∈ ℤsupposing orbit(T;f;o) supposing ∀x:T. ((f (f x)) x ∈ T)


Proof




Definitions occuring in Statement :  orbit: orbit(T;f;L) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] member: t ∈ T or: P ∨ Q cons: [a b] prop: so_lambda: λ2x.t[x] so_apply: x[s] false: False orbit: orbit(T;f;L) and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) top: Top decidable: Dec(P) not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] ge: i ≥  le: A ≤ B no_repeats: no_repeats(T;l) nat: select: L[n] subtract: m guard: {T} int_seg: {i..j-} lelt: i ≤ j < k sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list-cases product_subtype_list orbit_wf list_wf all_wf equal_wf length_of_nil_lemma length_of_cons_lemma decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf equal-wf-base non_neg_length decidable__le intformand_wf intformle_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma equal-wf-T-base length_wf false_wf le_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma nat_properties nat_wf lelt_wf eq_int_wf subtract_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert uiff_transitivity assert_wf bnot_wf not_wf equal-wf-base-T assert_of_bnot not_functionality_wrt_uiff itermSubtract_wf int_term_value_subtract_lemma squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule lambdaEquality applyEquality functionEquality universeEquality imageElimination voidElimination isect_memberEquality voidEquality inlFormation natural_numberEquality because_Cache independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation intEquality baseClosed rename inrFormation int_eqEquality independent_pairFormation addEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination instantiate cumulativity imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].
    \mforall{}o:T  List.  (||o||  =  1)  \mvee{}  (||o||  =  2)  supposing  orbit(T;f;o)  supposing  \mforall{}x:T.  ((f  (f  x))  =  x)



Date html generated: 2019_06_20-PM-01_38_21
Last ObjectModification: 2018_09_22-PM-10_50_40

Theory : list_1


Home Index