Nuprl Lemma : orbit-of-involution
∀[T:Type]. ∀[f:T ⟶ T].
  ∀o:T List. (||o|| = 1 ∈ ℤ) ∨ (||o|| = 2 ∈ ℤ) supposing orbit(T;f;o) supposing ∀x:T. ((f (f x)) = x ∈ T)
Proof
Definitions occuring in Statement : 
orbit: orbit(T;f;L)
, 
length: ||as||
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
cons: [a / b]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
false: False
, 
orbit: orbit(T;f;L)
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
top: Top
, 
decidable: Dec(P)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
no_repeats: no_repeats(T;l)
, 
nat: ℕ
, 
select: L[n]
, 
subtract: n - m
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list-cases, 
product_subtype_list, 
orbit_wf, 
list_wf, 
all_wf, 
equal_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
non_neg_length, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
equal-wf-T-base, 
length_wf, 
false_wf, 
le_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
nat_properties, 
nat_wf, 
lelt_wf, 
eq_int_wf, 
subtract_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
uiff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base-T, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
universeEquality, 
imageElimination, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
inlFormation, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
intEquality, 
baseClosed, 
rename, 
inrFormation, 
int_eqEquality, 
independent_pairFormation, 
addEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
instantiate, 
cumulativity, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].
    \mforall{}o:T  List.  (||o||  =  1)  \mvee{}  (||o||  =  2)  supposing  orbit(T;f;o)  supposing  \mforall{}x:T.  ((f  (f  x))  =  x)
Date html generated:
2019_06_20-PM-01_38_21
Last ObjectModification:
2018_09_22-PM-10_50_40
Theory : list_1
Home
Index