Nuprl Lemma : assert-poly-zero

n:ℕ. ∀p:polynom(n).  (↑poly-zero(n;p) ⇐⇒ ∀l:{l:ℤ List| ||l|| n ∈ ℤ(l@p 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  poly-int-val: l@p polynom: polynom(n) poly-zero: poly-zero(n;p) length: ||as|| list: List nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  iff: ⇐⇒ Q squash: T prop: true: True guard: {T} rev_implies:  Q so_lambda: λ2x.t[x] nat: so_apply: x[s] bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  nat_wf polynom_wf poly-zero_wf polynom_subtype_polyform bool_wf eqtt_to_assert equal_wf squash_wf true_wf poly-zero-implies iff_weakening_equal set_wf list_wf equal-wf-base-T list_subtype_base int_subtype_base all_wf equal-wf-T-base poly-int-val_wf2 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot false_wf poly-zero-false nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf not_wf
Rules used in proof :  hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyEquality sqequalRule unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_pairFormation lambdaEquality imageElimination universeEquality intEquality dependent_functionElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed because_Cache baseApply closedConclusion setElimination rename setEquality dependent_set_memberEquality dependent_pairFormation promote_hyp instantiate cumulativity voidElimination isect_memberEquality voidEquality computeAll

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polynom(n).    (\muparrow{}poly-zero(n;p)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  (l@p  =  0))



Date html generated: 2017_09_29-PM-06_00_20
Last ObjectModification: 2017_04_26-PM-02_04_53

Theory : integer!polynomials


Home Index