Nuprl Lemma : poly-zero-false
∀n:ℕ. ∀p:polynom(n).  (¬↑poly-zero(n;p) 
⇐⇒ ∃l:{l:ℤ List| ||l|| = n ∈ ℤ} . (¬(l@p = 0 ∈ ℤ)))
Proof
Definitions occuring in Statement : 
poly-int-val: l@p
, 
polynom: polynom(n)
, 
poly-zero: poly-zero(n;p)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
poly-zero: poly-zero(n;p)
, 
polynom: polynom(n)
, 
it: ⋅
, 
nil: []
, 
null: null(as)
, 
poly-int-val: l@p
, 
nequal: a ≠ b ∈ T 
, 
uiff: uiff(P;Q)
, 
cons: [a / b]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
assert: ↑b
, 
true: True
, 
polyform-lead-nonzero: polyform-lead-nonzero(n;p)
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
select: L[n]
, 
bnot: ¬bb
, 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
sum: Σ(f[x] | x < k)
Lemmas referenced : 
polynom_wf, 
subtract_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-assert, 
poly-zero_wf, 
polynom_subtype_polyform, 
istype-void, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
poly-int-val_wf2, 
istype-less_than, 
primrec-wf2, 
iff_wf, 
not_wf, 
assert_wf, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-nat, 
subtype_rel_self, 
istype-false, 
length_wf_nat, 
eq_int_wf, 
nil_wf, 
length_nil, 
neg_assert_of_eq_int, 
product_subtype_list, 
list-cases, 
null_nil_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
decidable__lt, 
non_neg_length, 
length_wf, 
le_weakening2, 
length_of_cons_lemma, 
bnot_wf, 
bool_wf, 
null_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
uiff_transitivity, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
add_nat_plus, 
nat_plus_properties, 
add-is-int-iff, 
false_wf, 
sum-nat, 
absval_wf, 
int_seg_properties, 
select_wf, 
int_seg_wf, 
add_nat_wf, 
nat_properties, 
cons_wf, 
decidable__equal_int, 
spread_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
sum_split_first, 
polynom-subtype-list, 
exp_wf2, 
iff_weakening_equal, 
sum_wf, 
add-subtract-cancel, 
sum_le, 
absval_mul, 
exp_add, 
int_seg_subtype_nat, 
select_cons_tl, 
exp_wf_nat_plus, 
mul_preserves_le, 
mul_bounds_1a, 
mul-one, 
mul-associates, 
minus-add, 
minus-one-mul, 
mul-commutes, 
mul-swap, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
add-swap, 
add-commutes, 
absval_pos, 
exp_wf4, 
less_than_functionality, 
absval_sum, 
le_weakening, 
sum_scalar_mult, 
less_than_wf, 
mul_preserves_lt, 
exp_step, 
less_than_transitivity2, 
istype-top, 
assert-bnot, 
bool_cases_sqequal, 
assert_of_lt_int, 
lt_int_wf, 
sum-unroll, 
int_term_value_minus_lemma, 
itermMinus_wf, 
multiply-is-int-iff, 
absval-positive, 
istype-base, 
stuck-spread, 
length_of_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
rename, 
setElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
productIsType, 
applyEquality, 
setIsType, 
intEquality, 
equalityIstype, 
inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
because_Cache, 
functionEquality, 
productEquality, 
setEquality, 
equalityTransitivity, 
equalityIsType4, 
productElimination, 
hypothesis_subsumption, 
promote_hyp, 
isect_memberEquality_alt, 
instantiate, 
cumulativity, 
equalityElimination, 
applyLambdaEquality, 
pointwiseFunctionality, 
imageElimination, 
addEquality, 
universeEquality, 
multiplyEquality, 
imageMemberEquality, 
minusEquality, 
equalityIsType1, 
axiomSqEquality, 
isect_memberFormation_alt, 
lessCases
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polynom(n).    (\mneg{}\muparrow{}poly-zero(n;p)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  (\mneg{}(l@p  =  0)))
Date html generated:
2020_05_19-PM-09_52_08
Last ObjectModification:
2019_12_31-PM-00_15_19
Theory : integer!polynomials
Home
Index