Nuprl Lemma : poly-zero-false

n:ℕ. ∀p:polynom(n).  (¬↑poly-zero(n;p) ⇐⇒ ∃l:{l:ℤ List| ||l|| n ∈ ℤ(l@p 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  poly-int-val: l@p polynom: polynom(n) poly-zero: poly-zero(n;p) length: ||as|| list: List nat: assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: iff: ⇐⇒ Q subtype_rel: A ⊆B rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) le: A ≤ B btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) poly-zero: poly-zero(n;p) polynom: polynom(n) it: nil: [] null: null(as) poly-int-val: l@p nequal: a ≠ b ∈  uiff: uiff(P;Q) cons: [a b] rev_uimplies: rev_uimplies(P;Q) ge: i ≥  top: Top sq_type: SQType(T) guard: {T} bfalse: ff bool: 𝔹 unit: Unit assert: b true: True polyform-lead-nonzero: polyform-lead-nonzero(n;p) nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] select: L[n] bnot: ¬bb sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k)
Lemmas referenced :  polynom_wf subtract_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-assert poly-zero_wf polynom_subtype_polyform istype-void list_wf list_subtype_base int_subtype_base poly-int-val_wf2 istype-less_than primrec-wf2 iff_wf not_wf assert_wf equal-wf-base set_subtype_base le_wf istype-nat subtype_rel_self istype-false length_wf_nat eq_int_wf nil_wf length_nil neg_assert_of_eq_int product_subtype_list list-cases null_nil_lemma int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__lt non_neg_length length_wf le_weakening2 length_of_cons_lemma bnot_wf bool_wf null_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot uiff_transitivity null_cons_lemma reduce_hd_cons_lemma add_nat_plus nat_plus_properties add-is-int-iff false_wf sum-nat absval_wf int_seg_properties select_wf int_seg_wf add_nat_wf nat_properties cons_wf decidable__equal_int spread_cons_lemma equal_wf squash_wf true_wf istype-universe sum_split_first polynom-subtype-list exp_wf2 iff_weakening_equal sum_wf add-subtract-cancel sum_le absval_mul exp_add int_seg_subtype_nat select_cons_tl exp_wf_nat_plus mul_preserves_le mul_bounds_1a mul-one mul-associates minus-add minus-one-mul mul-commutes mul-swap itermMultiply_wf int_term_value_mul_lemma add-swap add-commutes absval_pos exp_wf4 less_than_functionality absval_sum le_weakening sum_scalar_mult less_than_wf mul_preserves_lt exp_step less_than_transitivity2 istype-top assert-bnot bool_cases_sqequal assert_of_lt_int lt_int_wf sum-unroll int_term_value_minus_lemma itermMinus_wf multiply-is-int-iff absval-positive istype-base stuck-spread length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin rename setElimination sqequalRule functionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination dependent_set_memberEquality_alt hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination productIsType applyEquality setIsType intEquality equalityIstype inhabitedIsType baseApply closedConclusion baseClosed sqequalBase equalitySymmetry because_Cache functionEquality productEquality setEquality equalityTransitivity equalityIsType4 productElimination hypothesis_subsumption promote_hyp isect_memberEquality_alt instantiate cumulativity equalityElimination applyLambdaEquality pointwiseFunctionality imageElimination addEquality universeEquality multiplyEquality imageMemberEquality minusEquality equalityIsType1 axiomSqEquality isect_memberFormation_alt lessCases

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polynom(n).    (\mneg{}\muparrow{}poly-zero(n;p)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  (\mneg{}(l@p  =  0)))



Date html generated: 2020_05_19-PM-09_52_08
Last ObjectModification: 2019_12_31-PM-00_15_19

Theory : integer!polynomials


Home Index