Nuprl Lemma : poly-zero-implies

n:ℕ. ∀p:polyform(n).  ((↑poly-zero(n;p))  (∀l:{l:ℤ List| ||l|| n ∈ ℤ(l@p 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  poly-int-val: l@p poly-zero: poly-zero(n;p) polyform: polyform(n) length: ||as|| list: List nat: assert: b all: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q polyform: polyform(n) poly-zero: poly-zero(n;p) member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] or: P ∨ Q poly-int-val: l@p ifthenelse: if then else fi  btrue: tt cons: [a b] top: Top ge: i ≥  decidable: Dec(P) le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A uiff: uiff(P;Q) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q assert: b select: L[n] nil: [] it: sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x])
Lemmas referenced :  set_wf list_wf equal-wf-base-T list_subtype_base int_subtype_base assert_wf poly-zero_wf polyform_wf nat_wf eq_int_wf list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma le_weakening2 length_wf non_neg_length nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf bnot_wf not_wf equal-wf-T-base decidable__le add-is-int-iff intformnot_wf int_formula_prop_not_lemma false_wf null_cons_lemma spread_cons_lemma bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot subtract_wf itermSubtract_wf int_term_value_subtract_lemma le_wf stuck-spread base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution sqequalRule hypothesis introduction extract_by_obid isectElimination thin intEquality lambdaEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality independent_isectElimination setElimination rename natural_numberEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality dependent_pairFormation int_eqEquality independent_pairFormation computeAll independent_functionElimination pointwiseFunctionality instantiate cumulativity impliesFunctionality dependent_set_memberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polyform(n).    ((\muparrow{}poly-zero(n;p))  {}\mRightarrow{}  (\mforall{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  (l@p  =  0)))



Date html generated: 2017_09_29-PM-06_00_04
Last ObjectModification: 2017_04_26-PM-02_04_49

Theory : integer!polynomials


Home Index