Nuprl Lemma : intlex-aux-antisym

[l1:ℤ List]. ∀[l2:{as:ℤ List| ||as|| ||l1|| ∈ ℤ].
  (l1 l2 ∈ (ℤ List)) supposing (intlex-aux(l2;l1) tt and intlex-aux(l1;l2) tt)


Proof




Definitions occuring in Statement :  intlex-aux: intlex-aux(l1;l2) length: ||as|| list: List btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q or: P ∨ Q cons: [a b] top: Top exists: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q guard: {T} subtract: m ge: i ≥  le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True false: False sq_type: SQType(T) nat: intlex-aux: intlex-aux(l1;l2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) less_than: a < b squash: T isl: isl(x) bool: 𝔹 iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf list_wf equal-wf-base isect_wf bool_wf list_subtype_base int_subtype_base list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma le_weakening2 length_wf non_neg_length length_wf_nat nat_wf subtype_rel-equal base_wf le_antisymmetry_iff condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-zero le-add-cancel equal_wf set_subtype_base set_wf add-associates subtract_wf minus-zero add-swap subtype_base_sq add-mul-special two-mul mul-distributes-right zero-mul one-mul nat_properties spread_cons_lemma decidable__lt top_wf less_than_wf less_than_transitivity2 less_than_irreflexivity less_than_transitivity1 le_weakening bfalse_wf and_wf isl_wf unit_wf2 btrue_neq_bfalse decidable__equal_int false_wf not-equal-2 not-lt-2 cons_wf squash_wf true_wf le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality setEquality intEquality hypothesis lambdaFormation baseApply closedConclusion baseClosed hypothesisEquality applyEquality setElimination rename independent_isectElimination independent_functionElimination dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry dependent_pairFormation sqequalIntensionalEquality addEquality natural_numberEquality minusEquality axiomEquality instantiate cumulativity multiplyEquality lessCases sqequalAxiom independent_pairFormation imageMemberEquality imageElimination int_eqReduceFalseSq dependent_set_memberEquality applyLambdaEquality int_eqReduceTrueSq universeEquality

Latex:
\mforall{}[l1:\mBbbZ{}  List].  \mforall{}[l2:\{as:\mBbbZ{}  List|  ||as||  =  ||l1||\}  ].
    (l1  =  l2)  supposing  (intlex-aux(l2;l1)  =  tt  and  intlex-aux(l1;l2)  =  tt)



Date html generated: 2017_09_29-PM-05_48_46
Last ObjectModification: 2017_07_26-PM-01_37_15

Theory : list_0


Home Index