Nuprl Lemma : intlex-aux-antisym
∀[l1:ℤ List]. ∀[l2:{as:ℤ List| ||as|| = ||l1|| ∈ ℤ} ].
  (l1 = l2 ∈ (ℤ List)) supposing (intlex-aux(l2;l1) = tt and intlex-aux(l1;l2) = tt)
Proof
Definitions occuring in Statement : 
intlex-aux: intlex-aux(l1;l2)
, 
length: ||as||
, 
list: T List
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
subtract: n - m
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
false: False
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
intlex-aux: intlex-aux(l1;l2)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
less_than: a < b
, 
squash: ↓T
, 
isl: isl(x)
, 
bool: 𝔹
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
equal-wf-base, 
isect_wf, 
bool_wf, 
list_subtype_base, 
int_subtype_base, 
list-cases, 
length_of_nil_lemma, 
nil_wf, 
product_subtype_list, 
length_of_cons_lemma, 
le_weakening2, 
length_wf, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
subtype_rel-equal, 
base_wf, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
equal_wf, 
set_subtype_base, 
set_wf, 
add-associates, 
subtract_wf, 
minus-zero, 
add-swap, 
subtype_base_sq, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
one-mul, 
nat_properties, 
spread_cons_lemma, 
decidable__lt, 
top_wf, 
less_than_wf, 
less_than_transitivity2, 
less_than_irreflexivity, 
less_than_transitivity1, 
le_weakening, 
bfalse_wf, 
and_wf, 
isl_wf, 
unit_wf2, 
btrue_neq_bfalse, 
decidable__equal_int, 
false_wf, 
not-equal-2, 
not-lt-2, 
cons_wf, 
squash_wf, 
true_wf, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
setEquality, 
intEquality, 
hypothesis, 
lambdaFormation, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
addEquality, 
natural_numberEquality, 
minusEquality, 
axiomEquality, 
instantiate, 
cumulativity, 
multiplyEquality, 
lessCases, 
sqequalAxiom, 
independent_pairFormation, 
imageMemberEquality, 
imageElimination, 
int_eqReduceFalseSq, 
dependent_set_memberEquality, 
applyLambdaEquality, 
int_eqReduceTrueSq, 
universeEquality
Latex:
\mforall{}[l1:\mBbbZ{}  List].  \mforall{}[l2:\{as:\mBbbZ{}  List|  ||as||  =  ||l1||\}  ].
    (l1  =  l2)  supposing  (intlex-aux(l2;l1)  =  tt  and  intlex-aux(l1;l2)  =  tt)
Date html generated:
2017_09_29-PM-05_48_46
Last ObjectModification:
2017_07_26-PM-01_37_15
Theory : list_0
Home
Index