Nuprl Lemma : member-s-insert

[T:Type]. ∀x:T. ∀L:T List. ∀z:T.  ((z ∈ s-insert(x;L)) ⇐⇒ (z x ∈ T) ∨ (z ∈ L)) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  s-insert: s-insert(x;l) l_member: (x ∈ l) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 guard: {T} sq_type: SQType(T) false: False not: ¬A rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) s-insert: s-insert(x;l) implies:  Q so_apply: x[s] or: P ∨ Q prop: so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff assert_of_lt_int assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity le_wf le_int_wf less_than_wf lt_int_wf istype-assert istype-int not_wf bnot_wf cons_member int_subtype_base subtype_base_sq assert_wf bool_wf equal-wf-T-base eq_int_wf istype-universe subtype_rel_wf list_ind_cons_lemma cons_wf member_singleton btrue_neq_bfalse member-implies-null-eq-bfalse btrue_wf null_nil_lemma nil_wf istype-void list_ind_nil_lemma list_wf equal_wf s-insert_wf l_member_wf iff_wf list_induction
Rules used in proof :  equalityElimination cumulativity Error :inrFormation_alt,  baseClosed applyEquality universeEquality instantiate intEquality Error :productIsType,  Error :functionIsType,  promote_hyp productElimination Error :unionIsType,  equalitySymmetry equalityTransitivity because_Cache unionElimination Error :inhabitedIsType,  Error :equalityIstype,  Error :inlFormation_alt,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination independent_functionElimination Error :universeIsType,  unionEquality independent_isectElimination functionEquality Error :lambdaEquality_alt,  hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid Error :lambdaFormation_alt,  rename thin hypothesis axiomEquality sqequalRule introduction cut Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.  \mforall{}z:T.    ((z  \mmember{}  s-insert(x;L))  \mLeftarrow{}{}\mRightarrow{}  (z  =  x)  \mvee{}  (z  \mmember{}  L))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2019_06_20-PM-00_42_20
Last ObjectModification: 2019_06_19-AM-10_43_11

Theory : list_0


Home Index