Nuprl Lemma : member-s-insert
∀[T:Type]. ∀x:T. ∀L:T List. ∀z:T.  ((z ∈ s-insert(x;L)) 
⇐⇒ (z = x ∈ T) ∨ (z ∈ L)) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
s-insert: s-insert(x;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
guard: {T}
, 
sq_type: SQType(T)
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s1;s2;s3]
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
s-insert: s-insert(x;l)
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
assert_of_le_int, 
bnot_of_lt_int, 
assert_functionality_wrt_uiff, 
assert_of_lt_int, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
le_wf, 
le_int_wf, 
less_than_wf, 
lt_int_wf, 
istype-assert, 
istype-int, 
not_wf, 
bnot_wf, 
cons_member, 
int_subtype_base, 
subtype_base_sq, 
assert_wf, 
bool_wf, 
equal-wf-T-base, 
eq_int_wf, 
istype-universe, 
subtype_rel_wf, 
list_ind_cons_lemma, 
cons_wf, 
member_singleton, 
btrue_neq_bfalse, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
nil_wf, 
istype-void, 
list_ind_nil_lemma, 
list_wf, 
equal_wf, 
s-insert_wf, 
l_member_wf, 
iff_wf, 
list_induction
Rules used in proof : 
equalityElimination, 
cumulativity, 
Error :inrFormation_alt, 
baseClosed, 
applyEquality, 
universeEquality, 
instantiate, 
intEquality, 
Error :productIsType, 
Error :functionIsType, 
promote_hyp, 
productElimination, 
Error :unionIsType, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
unionElimination, 
Error :inhabitedIsType, 
Error :equalityIstype, 
Error :inlFormation_alt, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
Error :universeIsType, 
unionEquality, 
independent_isectElimination, 
functionEquality, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
Error :lambdaFormation_alt, 
rename, 
thin, 
hypothesis, 
axiomEquality, 
sqequalRule, 
introduction, 
cut, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.  \mforall{}z:T.    ((z  \mmember{}  s-insert(x;L))  \mLeftarrow{}{}\mRightarrow{}  (z  =  x)  \mvee{}  (z  \mmember{}  L))  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2019_06_20-PM-00_42_20
Last ObjectModification:
2019_06_19-AM-10_43_11
Theory : list_0
Home
Index