Nuprl Lemma : comparison-seq-zero

[T:Type]. ∀[c1:comparison(T)]. ∀[c2:⋂a:T. comparison({b:T| (c1 b) 0 ∈ ℤ)]. ∀[x,y:T].
  uiff((comparison-seq(c1; c2) y) 0 ∈ ℤ;((c1 y) 0 ∈ ℤ) ∧ ((c2 y) 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  comparison-seq: comparison-seq(c1; c2) comparison: comparison(T) uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a isect: x:A. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] comparison-seq: comparison-seq(c1; c2) has-value: (a)↓ member: t ∈ T uimplies: supposing a comparison: comparison(T) so_lambda: λ2x.t[x] all: x:A. B[x] prop: so_apply: x[s] implies:  Q false: False not: ¬A and: P ∧ Q sq_stable: SqStable(P) squash: T bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  value-type-has-value int-value-type isect_wf comparison_wf equal-wf-T-base comparison-reflexive equal_wf squash_wf sq_stable__uiff sq_stable__equal sq_stable__and eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule callbyvalueReduce cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis applyEquality setElimination rename hypothesisEquality because_Cache lambdaEquality dependent_functionElimination setEquality cumulativity baseClosed universeEquality equalityTransitivity equalitySymmetry lambdaFormation dependent_set_memberEquality independent_functionElimination int_eqEquality productEquality natural_numberEquality isect_memberEquality axiomEquality imageMemberEquality imageElimination unionElimination equalityElimination productElimination int_eqReduceTrueSq independent_pairFormation independent_pairEquality dependent_pairFormation promote_hyp instantiate voidElimination int_eqReduceFalseSq voidEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[c1:comparison(T)].  \mforall{}[c2:\mcap{}a:T.  comparison(\{b:T|  (c1  a  b)  =  0\}  )].  \mforall{}[x,y:T].
    uiff((comparison-seq(c1;  c2)  x  y)  =  0;((c1  x  y)  =  0)  \mwedge{}  ((c2  x  y)  =  0))



Date html generated: 2017_04_17-AM-08_28_36
Last ObjectModification: 2017_02_27-PM-04_50_07

Theory : list_1


Home Index