Nuprl Lemma : comparison-seq-zero
∀[T:Type]. ∀[c1:comparison(T)]. ∀[c2:⋂a:T. comparison({b:T| (c1 a b) = 0 ∈ ℤ} )]. ∀[x,y:T].
  uiff((comparison-seq(c1; c2) x y) = 0 ∈ ℤ;((c1 x y) = 0 ∈ ℤ) ∧ ((c2 x y) = 0 ∈ ℤ))
Proof
Definitions occuring in Statement : 
comparison-seq: comparison-seq(c1; c2), 
comparison: comparison(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
isect: ⋂x:A. B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
comparison-seq: comparison-seq(c1; c2), 
has-value: (a)↓, 
member: t ∈ T, 
uimplies: b supposing a, 
comparison: comparison(T), 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
false: False, 
not: ¬A, 
and: P ∧ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
isect_wf, 
comparison_wf, 
equal-wf-T-base, 
comparison-reflexive, 
equal_wf, 
squash_wf, 
sq_stable__uiff, 
sq_stable__equal, 
sq_stable__and, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
callbyvalueReduce, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
setEquality, 
cumulativity, 
baseClosed, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
dependent_set_memberEquality, 
independent_functionElimination, 
int_eqEquality, 
productEquality, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
imageMemberEquality, 
imageElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
int_eqReduceTrueSq, 
independent_pairFormation, 
independent_pairEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
int_eqReduceFalseSq, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[c1:comparison(T)].  \mforall{}[c2:\mcap{}a:T.  comparison(\{b:T|  (c1  a  b)  =  0\}  )].  \mforall{}[x,y:T].
    uiff((comparison-seq(c1;  c2)  x  y)  =  0;((c1  x  y)  =  0)  \mwedge{}  ((c2  x  y)  =  0))
 Date html generated: 
2017_04_17-AM-08_28_36
 Last ObjectModification: 
2017_02_27-PM-04_50_07
Theory : list_1
Home
Index