Nuprl Lemma : cycle-as-flips
∀n:ℕ. ∀L:ℕn List.  ∃flips:(ℕn × ℕn) List. (cycle(L) = compose-flips(flips) ∈ (ℕn ⟶ ℕn)) supposing no_repeats(ℕn;L)
Proof
Definitions occuring in Statement : 
compose-flips: compose-flips(flips), 
cycle: cycle(L), 
no_repeats: no_repeats(T;l), 
list: T List, 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
cycle: cycle(L), 
ifthenelse: if b then t else f fi , 
null: null(as), 
nil: [], 
it: ⋅, 
btrue: tt, 
compose-flips: compose-flips(flips), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
map: map(f;as), 
or: P ∨ Q, 
cons: [a / b], 
top: Top, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
bfalse: ff, 
let: let, 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
le: A ≤ B, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_induction, 
int_seg_wf, 
isect_wf, 
no_repeats_wf, 
exists_wf, 
list_wf, 
equal_wf, 
cycle_wf, 
compose-flips_wf, 
no_repeats_witness, 
nil_wf, 
cons_wf, 
nat_wf, 
equal-wf-base-T, 
list-cases, 
product_subtype_list, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
list_ind_cons_lemma, 
null_nil_lemma, 
list_ind_nil_lemma, 
map_nil_lemma, 
reduce_nil_lemma, 
eqtt_to_assert, 
assert_of_eq_int, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
eqff_to_assert, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
cycle-flip-lemma, 
length_of_cons_lemma, 
non_neg_length, 
length_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
reduce_tl_cons_lemma, 
no_repeats_cons, 
map_cons_lemma, 
reduce_cons_lemma, 
squash_wf, 
true_wf, 
compose_wf, 
flip_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
productEquality, 
functionEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberFormation, 
dependent_pairFormation, 
functionExtensionality, 
baseClosed, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityElimination, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
instantiate, 
addEquality, 
independent_pairEquality, 
applyEquality, 
imageElimination, 
universeEquality, 
cumulativity, 
imageMemberEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}L:\mBbbN{}n  List.
    \mexists{}flips:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.  (cycle(L)  =  compose-flips(flips))  supposing  no\_repeats(\mBbbN{}n;L)
Date html generated:
2017_04_17-AM-08_20_33
Last ObjectModification:
2017_02_27-PM-04_43_22
Theory : list_1
Home
Index