Nuprl Lemma : finite-injection
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  
⇒ (∀n:ℕ. ∀s:ℕn ⟶ T.  (Surj(ℕn;T;s) 
⇒ (∀f:T ⟶ T. ∀x:T. ∃m:ℕ+n + 1. ((f^m x) = x ∈ T) supposing Inj(T;T;f)))))
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
inject: Inj(A;B;f)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
subtract: n - m
, 
sq_type: SQType(T)
Lemmas referenced : 
surject-inverse, 
inject_wf, 
surject_wf, 
int_seg_wf, 
istype-nat, 
decidable_wf, 
equal_wf, 
istype-universe, 
decidable__exists_int_seg, 
fun_exp_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
int_seg_subtype_nat, 
istype-false, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__lt, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-less_than, 
fun_exp-injection, 
fun_exp_add_apply, 
minus-one-mul, 
add-commutes, 
add-associates, 
add-mul-special, 
zero-mul, 
zero-add, 
subtype_base_sq, 
add-zero, 
add-swap, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
pigeon-hole
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
extract_by_obid, 
isectElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
universeIsType, 
functionIsType, 
natural_numberEquality, 
setElimination, 
instantiate, 
universeEquality, 
addEquality, 
applyEquality, 
dependent_set_memberEquality_alt, 
imageElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
equalityIstype, 
intEquality, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
productIsType, 
cumulativity
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.
                (Surj(\mBbbN{}n;T;s)  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x:T.  \mexists{}m:\mBbbN{}\msupplus{}n  +  1.  ((f\^{}m  x)  =  x)  supposing  Inj(T;T;f)))))
Date html generated:
2020_05_19-PM-09_43_47
Last ObjectModification:
2020_01_04-PM-08_18_24
Theory : list_1
Home
Index