Nuprl Lemma : finite-injection

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀n:ℕ. ∀s:ℕn ⟶ T.  (Surj(ℕn;T;s)  (∀f:T ⟶ T. ∀x:T. ∃m:ℕ+1. ((f^m x) x ∈ T) supposing Inj(T;T;f)))))


Proof




Definitions occuring in Statement :  fun_exp: f^n surject: Surj(A;B;f) inject: Inj(A;B;f) int_seg: {i..j-} nat: decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T inject: Inj(A;B;f) iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] prop: nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False so_apply: x[s] subtype_rel: A ⊆B less_than': less_than'(a;b) guard: {T} true: True rev_implies:  Q cand: c∧ B subtract: m sq_type: SQType(T)
Lemmas referenced :  surject-inverse inject_wf surject_wf int_seg_wf istype-nat decidable_wf equal_wf istype-universe decidable__exists_int_seg fun_exp_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_subtype_nat istype-false set_subtype_base lelt_wf int_subtype_base squash_wf true_wf subtype_rel_self iff_weakening_equal decidable__lt subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma itermAdd_wf int_term_value_add_lemma istype-less_than fun_exp-injection fun_exp_add_apply minus-one-mul add-commutes add-associates add-mul-special zero-mul zero-add subtype_base_sq add-zero add-swap int_formula_prop_eq_lemma intformeq_wf decidable__equal_int pigeon-hole
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType rename extract_by_obid isectElimination because_Cache productElimination independent_functionElimination universeIsType functionIsType natural_numberEquality setElimination instantiate universeEquality addEquality applyEquality dependent_set_memberEquality_alt imageElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination equalityIstype intEquality sqequalBase equalitySymmetry equalityTransitivity applyLambdaEquality imageMemberEquality baseClosed productIsType cumulativity

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.
                (Surj(\mBbbN{}n;T;s)  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x:T.  \mexists{}m:\mBbbN{}\msupplus{}n  +  1.  ((f\^{}m  x)  =  x)  supposing  Inj(T;T;f)))))



Date html generated: 2020_05_19-PM-09_43_47
Last ObjectModification: 2020_01_04-PM-08_18_24

Theory : list_1


Home Index