Nuprl Lemma : finite-max

[T:Type]. (finite-type(T)   (∀g:T ⟶ ℤ. ∃x:T. ∀y:T. ((g y) ≤ (g x))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] or: P ∨ Q uimplies: supposing a not: ¬A false: False cons: [a b] top: Top nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: guard: {T} decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] l_all: (∀x∈L.P[x])
Lemmas referenced :  finite-type_wf finite-type-iff-list list-cases length_of_nil_lemma null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse product_subtype_list length_of_cons_lemma add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf maximal-in-list select_wf int_seg_properties length_wf decidable__le intformle_wf int_formula_prop_le_lemma less_than'_wf all_wf le_wf l_all_iff l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation functionEquality cumulativity hypothesisEquality intEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis universeEquality productElimination independent_functionElimination dependent_functionElimination unionElimination sqequalRule rename because_Cache independent_isectElimination equalityTransitivity equalitySymmetry voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed applyLambdaEquality setElimination pointwiseFunctionality baseApply closedConclusion dependent_pairFormation lambdaEquality int_eqEquality computeAll imageElimination independent_pairEquality applyEquality functionExtensionality axiomEquality setEquality

Latex:
\mforall{}[T:Type].  (finite-type(T)  {}\mRightarrow{}  T  {}\mRightarrow{}  (\mforall{}g:T  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}x:T.  \mforall{}y:T.  ((g  y)  \mleq{}  (g  x))))



Date html generated: 2017_04_17-AM-07_45_59
Last ObjectModification: 2017_02_27-PM-04_18_19

Theory : list_1


Home Index