Nuprl Lemma : finite-max
∀[T:Type]. (finite-type(T) 
⇒ T 
⇒ (∀g:T ⟶ ℤ. ∃x:T. ∀y:T. ((g y) ≤ (g x))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
guard: {T}
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
l_exists: (∃x∈L. P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
finite-type_wf, 
finite-type-iff-list, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
product_subtype_list, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
equal_wf, 
maximal-in-list, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
less_than'_wf, 
all_wf, 
le_wf, 
l_all_iff, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
intEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
universeEquality, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
rename, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
setElimination, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
computeAll, 
imageElimination, 
independent_pairEquality, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
setEquality
Latex:
\mforall{}[T:Type].  (finite-type(T)  {}\mRightarrow{}  T  {}\mRightarrow{}  (\mforall{}g:T  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}x:T.  \mforall{}y:T.  ((g  y)  \mleq{}  (g  x))))
Date html generated:
2017_04_17-AM-07_45_59
Last ObjectModification:
2017_02_27-PM-04_18_19
Theory : list_1
Home
Index