Nuprl Lemma : from-upto-singleton

[n,m,k:ℤ].  uiff([n, m) [k] ∈ (ℤ List);(m (n 1) ∈ ℤ) ∧ (k n ∈ ℤ))


Proof




Definitions occuring in Statement :  from-upto: [n, m) cons: [a b] nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B from-upto: [n, m) has-value: (a)↓ all: x:A. B[x] top: Top not: ¬A implies:  Q false: False decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] sq_type: SQType(T) guard: {T} ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff squash: T ge: i ≥  bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b
Lemmas referenced :  equal-wf-base list_wf int_subtype_base lt_int_wf value-type-has-value int-value-type null_nil_lemma btrue_wf reduce_tl_cons_lemma nil_wf and_wf equal_wf tl_wf cons_wf from-upto_wf subtype_rel_list le_wf less_than_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse assert_wf bnot_wf not_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot reduce_hd_cons_lemma hd_wf squash_wf ge_wf length_wf length_cons_ge_one top_wf from-upto-nil decidable__le intformle_wf int_formula_prop_le_lemma bool_cases_sqequal assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality extract_by_obid isectElimination intEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache productEquality isect_memberEquality equalityTransitivity equalitySymmetry callbyvalueReduce independent_isectElimination addEquality natural_numberEquality dependent_functionElimination voidElimination voidEquality dependent_set_memberEquality applyLambdaEquality setElimination rename setEquality lambdaEquality independent_functionElimination unionElimination dependent_pairFormation int_eqEquality computeAll instantiate cumulativity lambdaFormation impliesFunctionality imageElimination universeEquality imageMemberEquality equalityElimination promote_hyp

Latex:
\mforall{}[n,m,k:\mBbbZ{}].    uiff([n,  m)  =  [k];(m  =  (n  +  1))  \mwedge{}  (k  =  n))



Date html generated: 2017_04_17-AM-07_56_04
Last ObjectModification: 2017_02_27-PM-04_28_26

Theory : list_1


Home Index