Nuprl Lemma : from-upto-singleton
∀[n,m,k:ℤ].  uiff([n, m) = [k] ∈ (ℤ List);(m = (n + 1) ∈ ℤ) ∧ (k = n ∈ ℤ))
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
from-upto: [n, m)
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
squash: ↓T
, 
ge: i ≥ j 
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
equal-wf-base, 
list_wf, 
int_subtype_base, 
lt_int_wf, 
value-type-has-value, 
int-value-type, 
null_nil_lemma, 
btrue_wf, 
reduce_tl_cons_lemma, 
nil_wf, 
and_wf, 
equal_wf, 
tl_wf, 
cons_wf, 
from-upto_wf, 
subtype_rel_list, 
le_wf, 
less_than_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
assert_wf, 
bnot_wf, 
not_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
reduce_hd_cons_lemma, 
hd_wf, 
squash_wf, 
ge_wf, 
length_wf, 
length_cons_ge_one, 
top_wf, 
from-upto-nil, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
bool_cases_sqequal, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
productEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
setEquality, 
lambdaEquality, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
instantiate, 
cumulativity, 
lambdaFormation, 
impliesFunctionality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}[n,m,k:\mBbbZ{}].    uiff([n,  m)  =  [k];(m  =  (n  +  1))  \mwedge{}  (k  =  n))
Date html generated:
2017_04_17-AM-07_56_04
Last ObjectModification:
2017_02_27-PM-04_28_26
Theory : list_1
Home
Index