Nuprl Lemma : l_contains_pos_length
∀[T:Type]. ∀[A,B:T List].  (0 < ||B||) supposing (0 < ||A|| and A ⊆ B)
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
l_contains: A ⊆ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
true: True
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
ge: i ≥ j 
Lemmas referenced : 
less_than_wf, 
length_wf, 
member-less_than, 
l_all_wf, 
l_member_wf, 
istype-universe, 
list_wf, 
pos_length2, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
istype-void, 
length_of_cons_lemma, 
istype-false, 
add_nat_plus, 
length_wf_nat, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
le_wf, 
stuck-spread, 
istype-base, 
length_of_nil_lemma, 
nat_properties, 
intformle_wf, 
int_formula_prop_le_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :setIsType, 
Error :inhabitedIsType, 
universeEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaFormation_alt, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :equalityIsType1, 
Error :productIsType, 
addEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A,B:T  List].    (0  <  ||B||)  supposing  (0  <  ||A||  and  A  \msubseteq{}  B)
Date html generated:
2019_06_20-PM-01_26_34
Last ObjectModification:
2018_10_06-AM-11_23_28
Theory : list_1
Home
Index