Nuprl Lemma : map-fst-zip
∀[as,bs:Top List].  map(λp.(fst(p));zip(as;bs)) ~ as supposing ||as|| = ||bs|| ∈ ℤ
Proof
Definitions occuring in Statement : 
zip: zip(as;bs)
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pi1: fst(t)
, 
lambda: λx.A[x]
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
cons: [a / b]
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
pi1: fst(t)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
top_wf, 
list-cases, 
length_of_nil_lemma, 
zip_nil_lemma, 
map_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
length_of_cons_lemma, 
length_wf, 
istype-nat, 
colength_wf_list, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
istype-void, 
list_wf, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
le_wf, 
zip_cons_nil_lemma, 
le_weakening2, 
non_neg_length, 
decidable__lt, 
zip_cons_cons_lemma, 
map_cons_lemma, 
add-is-int-iff, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
unionElimination, 
because_Cache, 
equalityIstype, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
instantiate, 
equalityTransitivity, 
applyLambdaEquality, 
addEquality, 
applyEquality, 
dependent_set_memberEquality_alt, 
imageElimination, 
baseApply, 
closedConclusion, 
intEquality, 
pointwiseFunctionality
Latex:
\mforall{}[as,bs:Top  List].    map(\mlambda{}p.(fst(p));zip(as;bs))  \msim{}  as  supposing  ||as||  =  ||bs||
Date html generated:
2020_05_19-PM-09_50_03
Last ObjectModification:
2020_02_27-PM-04_02_40
Theory : list_1
Home
Index