Nuprl Lemma : member-nth-tl-implies-member
∀[T:Type]. ∀x:T. ∀n:ℕ. ∀L:T List.  ((x ∈ nth_tl(n;L)) 
⇒ (x ∈ L))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
nth_tl: nth_tl(n;as)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
nth_tl: nth_tl(n;as)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtract: n - m
, 
btrue: tt
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
cons: [a / b]
, 
top: Top
Lemmas referenced : 
l_member_wf, 
list_wf, 
ifthenelse_wf, 
le_int_wf, 
nth_tl_wf, 
tl_wf, 
subtract_wf, 
all_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
le_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
list-cases, 
reduce_tl_nil_lemma, 
nth_tl_nil, 
product_subtype_list, 
reduce_tl_cons_lemma, 
cons_member, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
because_Cache, 
lambdaEquality, 
functionEquality, 
intEquality, 
introduction, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}n:\mBbbN{}.  \mforall{}L:T  List.    ((x  \mmember{}  nth\_tl(n;L))  {}\mRightarrow{}  (x  \mmember{}  L))
Date html generated:
2016_05_14-PM-01_27_21
Last ObjectModification:
2015_12_26-PM-04_51_02
Theory : list_1
Home
Index