Nuprl Lemma : member-nth-tl-implies-member

[T:Type]. ∀x:T. ∀n:ℕ. ∀L:T List.  ((x ∈ nth_tl(n;L))  (x ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) nth_tl: nth_tl(n;as) list: List nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff subtract: m btrue: tt implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q cons: [a b] top: Top
Lemmas referenced :  l_member_wf list_wf ifthenelse_wf le_int_wf nth_tl_wf tl_wf subtract_wf all_wf set_wf less_than_wf primrec-wf2 nat_wf assert_wf bnot_wf not_wf le_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_le_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot list-cases reduce_tl_nil_lemma nth_tl_nil product_subtype_list reduce_tl_cons_lemma cons_member equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality rename setElimination natural_numberEquality because_Cache lambdaEquality functionEquality intEquality introduction universeEquality equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination instantiate cumulativity independent_isectElimination independent_functionElimination productElimination independent_pairFormation impliesFunctionality promote_hyp hypothesis_subsumption isect_memberEquality voidElimination voidEquality inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}n:\mBbbN{}.  \mforall{}L:T  List.    ((x  \mmember{}  nth\_tl(n;L))  {}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2016_05_14-PM-01_27_21
Last ObjectModification: 2015_12_26-PM-04_51_02

Theory : list_1


Home Index