Nuprl Lemma : nth_tl_nil

[n:ℤ]. (nth_tl(n;[]) [])


Proof




Definitions occuring in Statement :  nth_tl: nth_tl(n;as) nil: [] uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt subtype_rel: A ⊆B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf lt_int_wf less_than_wf bnot_wf satisfiable-full-omega-tt intformand_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf reduce_tl_nil_lemma uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut intWeakElimination sqequalHypSubstitution thin rename hypothesis sqequalRule sqequalAxiom axiomEquality equalityTransitivity equalitySymmetry intEquality extract_by_obid isectElimination hypothesisEquality natural_numberEquality baseApply closedConclusion baseClosed applyEquality because_Cache independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation unionElimination equalityElimination independent_functionElimination productElimination

Latex:
\mforall{}[n:\mBbbZ{}].  (nth\_tl(n;[])  \msim{}  [])



Date html generated: 2017_04_14-AM-09_25_07
Last ObjectModification: 2017_02_27-PM-03_59_30

Theory : list_1


Home Index