Nuprl Lemma : mklist-add
∀[T:Type]. ∀[n,m:ℕ]. ∀[f:ℕn + m ⟶ T].  (mklist(n + m;f) = (mklist(n;f) @ mklist(m;λi.(f (n + i)))) ∈ (T List))
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
append: as @ bs
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
subtract: n - m
Lemmas referenced : 
int_seg_wf, 
add-member-int_seg1, 
nat_properties, 
decidable__le, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
list_extensionality, 
mklist_wf, 
le_wf, 
append_wf, 
mklist_length, 
length-append, 
nat_wf, 
less_than_wf, 
length_wf, 
equal_wf, 
squash_wf, 
true_wf, 
select_wf, 
select_append_front, 
iff_weakening_equal, 
mklist_select, 
select_append_back, 
subtype_base_sq, 
int_subtype_base, 
minus-one-mul, 
add-commutes, 
add-swap, 
add-mul-special, 
zero-mul, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
cumulativity, 
functionEquality, 
axiomEquality, 
universeEquality, 
lambdaFormation, 
addLevel, 
levelHypothesis, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  +  m  {}\mrightarrow{}  T].    (mklist(n  +  m;f)  =  (mklist(n;f)  @  mklist(m;\mlambda{}i.(f  (n  +  i)))))
Date html generated:
2017_04_17-AM-07_42_02
Last ObjectModification:
2017_02_27-PM-04_15_41
Theory : list_1
Home
Index