Nuprl Lemma : mklist-add

[T:Type]. ∀[n,m:ℕ]. ∀[f:ℕm ⟶ T].  (mklist(n m;f) (mklist(n;f) mklist(m;λi.(f (n i)))) ∈ (T List))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) append: as bs list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) subtract: m
Lemmas referenced :  int_seg_wf add-member-int_seg1 nat_properties decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf list_extensionality mklist_wf le_wf append_wf mklist_length length-append nat_wf less_than_wf length_wf equal_wf squash_wf true_wf select_wf select_append_front iff_weakening_equal mklist_select select_append_back subtype_base_sq int_subtype_base minus-one-mul add-commutes add-swap add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality applyEquality functionExtensionality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename because_Cache hypothesis productElimination independent_isectElimination dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll cumulativity functionEquality axiomEquality universeEquality lambdaFormation addLevel levelHypothesis imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_functionElimination instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  +  m  {}\mrightarrow{}  T].    (mklist(n  +  m;f)  =  (mklist(n;f)  @  mklist(m;\mlambda{}i.(f  (n  +  i)))))



Date html generated: 2017_04_17-AM-07_42_02
Last ObjectModification: 2017_02_27-PM-04_15_41

Theory : list_1


Home Index