Nuprl Lemma : nil-contains

[T:Type]. ∀L:T List. (L ⊆ [] ⇐⇒ ↑null(L))


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B null: null(as) nil: [] list: List assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] top: Top bfalse: ff iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: rev_implies:  Q false: False l_contains: A ⊆ B l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) not: ¬A nat_plus: + less_than: a < b squash: T guard: {T} decidable: Dec(P) uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] ge: i ≥ 
Lemmas referenced :  list-cases null_nil_lemma product_subtype_list null_cons_lemma list_wf l_contains_wf nil_wf l_contains_nil true_wf length_of_cons_lemma false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf lelt_wf length_wf btrue_wf member-implies-null-eq-bfalse select_wf cons_wf non_neg_length intformle_wf int_formula_prop_le_lemma btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality cumulativity universeEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename pointwiseFunctionality baseApply closedConclusion independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll independent_functionElimination addEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (L  \msubseteq{}  []  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}null(L))



Date html generated: 2017_04_17-AM-07_28_33
Last ObjectModification: 2017_02_27-PM-04_06_19

Theory : list_1


Home Index