Nuprl Lemma : null-segment

[T:Type]. ∀[as:T List]. ∀[i:{0...||as||}]. ∀[j:{i...||as||}].  null(as[i..j-]) (i =z j)


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| null: null(as) list: List int_iseg: {i...j} eq_int: (i =z j) bool: 𝔹 uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: int_iseg: {i...j} subtype_rel: A ⊆B uimplies: supposing a top: Top true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A uiff: uiff(P;Q)
Lemmas referenced :  length_segment equal_wf squash_wf true_wf bool_wf null-length-zero segment_wf subtype_rel_list top_wf eq_int_wf iff_weakening_equal int_iseg_wf length_wf list_wf iff_imp_equal_bool subtract_wf int_iseg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf equal-wf-T-base assert_of_eq_int assert_wf iff_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality cumulativity setElimination rename because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality sqequalRule natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination intEquality independent_pairFormation lambdaFormation dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality computeAll addLevel impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[i:\{0...||as||\}].  \mforall{}[j:\{i...||as||\}].    null(as[i..j\msupminus{}])  =  (i  =\msubz{}  j)



Date html generated: 2017_04_17-AM-07_36_24
Last ObjectModification: 2017_02_27-PM-04_10_28

Theory : list_1


Home Index