Nuprl Lemma : null-segment
∀[T:Type]. ∀[as:T List]. ∀[i:{0...||as||}]. ∀[j:{i...||as||}].  null(as[i..j-]) = (i =z j)
Proof
Definitions occuring in Statement : 
segment: as[m..n-]
, 
length: ||as||
, 
null: null(as)
, 
list: T List
, 
int_iseg: {i...j}
, 
eq_int: (i =z j)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
int_iseg: {i...j}
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
Lemmas referenced : 
length_segment, 
equal_wf, 
squash_wf, 
true_wf, 
bool_wf, 
null-length-zero, 
segment_wf, 
subtype_rel_list, 
top_wf, 
eq_int_wf, 
iff_weakening_equal, 
int_iseg_wf, 
length_wf, 
list_wf, 
iff_imp_equal_bool, 
subtract_wf, 
int_iseg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
assert_of_eq_int, 
assert_wf, 
iff_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
intEquality, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[i:\{0...||as||\}].  \mforall{}[j:\{i...||as||\}].    null(as[i..j\msupminus{}])  =  (i  =\msubz{}  j)
Date html generated:
2017_04_17-AM-07_36_24
Last ObjectModification:
2017_02_27-PM-04_10_28
Theory : list_1
Home
Index