Nuprl Lemma : permutation-split
∀[A:Type]. ∀p:A ⟶ 𝔹. ∀L:A List.  permutation(A;filter(λx.p[x];L) @ filter(λx.(¬bp[x]);L);L)
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
filter: filter(P;l)
, 
append: as @ bs
, 
list: T List
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
top: Top
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
permutation_wf, 
append_wf, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
list_wf, 
filter_nil_lemma, 
list_ind_nil_lemma, 
permutation-nil, 
filter_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
list_ind_cons_lemma, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
cons_wf, 
nil_wf, 
permutation_weakening, 
permutation_functionality_wrt_permutation, 
append_functionality_wrt_permutation, 
permutation-rotate
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
universeEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
baseClosed
Latex:
\mforall{}[A:Type].  \mforall{}p:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:A  List.    permutation(A;filter(\mlambda{}x.p[x];L)  @  filter(\mlambda{}x.(\mneg{}\msubb{}p[x]);L);L)
Date html generated:
2017_04_17-AM-08_25_15
Last ObjectModification:
2017_02_27-PM-04_46_25
Theory : list_1
Home
Index