Nuprl Lemma : permutation-split

[A:Type]. ∀p:A ⟶ 𝔹. ∀L:A List.  permutation(A;filter(λx.p[x];L) filter(λx.(¬bp[x]);L);L)


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) filter: filter(P;l) append: as bs list: List bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q top: Top append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bnot: ¬bb bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction permutation_wf append_wf filter_wf5 l_member_wf bnot_wf list_wf filter_nil_lemma list_ind_nil_lemma permutation-nil filter_cons_lemma bool_wf eqtt_to_assert list_ind_cons_lemma uiff_transitivity equal-wf-T-base assert_wf not_wf eqff_to_assert assert_of_bnot equal_wf cons_wf nil_wf permutation_weakening permutation_functionality_wrt_permutation append_functionality_wrt_permutation permutation-rotate
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity applyEquality functionExtensionality setElimination rename hypothesis setEquality because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality functionEquality universeEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}p:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:A  List.    permutation(A;filter(\mlambda{}x.p[x];L)  @  filter(\mlambda{}x.(\mneg{}\msubb{}p[x]);L);L)



Date html generated: 2017_04_17-AM-08_25_15
Last ObjectModification: 2017_02_27-PM-04_46_25

Theory : list_1


Home Index