Nuprl Lemma : single_iseg
∀[T:Type]. ∀L:T List. ∀x:T.  ([x] ≤ L 
⇐⇒ 0 < ||L|| ∧ (L[0] = x ∈ T))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
cons: [a / b]
, 
select: L[n]
, 
uimplies: b supposing a
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
true: True
, 
guard: {T}
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
list-cases, 
product_subtype_list, 
list_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
iseg_nil, 
cons_wf, 
nil_wf, 
assert_elim, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
iseg_wf, 
less_than_wf, 
equal-wf-base-T, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
equal_wf, 
nil_iseg, 
length_wf, 
cons_iseg, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
cumulativity, 
universeEquality, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
imageElimination, 
productEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
addEquality, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    ([x]  \mleq{}  L  \mLeftarrow{}{}\mRightarrow{}  0  <  ||L||  \mwedge{}  (L[0]  =  x))
Date html generated:
2017_04_17-AM-08_46_22
Last ObjectModification:
2017_02_27-PM-05_04_04
Theory : list_1
Home
Index