Nuprl Lemma : single_iseg

[T:Type]. ∀L:T List. ∀x:T.  ([x] ≤ ⇐⇒ 0 < ||L|| ∧ (L[0] x ∈ T))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 select: L[n] length: ||as|| cons: [a b] nil: [] list: List less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T or: P ∨ Q cons: [a b] select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False prop: rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) nat_plus: + true: True guard: {T} decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  list-cases product_subtype_list list_wf length_of_nil_lemma stuck-spread base_wf iseg_nil cons_wf nil_wf assert_elim null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse iseg_wf less_than_wf equal-wf-base-T length_of_cons_lemma add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf nil_iseg length_wf cons_iseg iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule cumulativity universeEquality baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality independent_pairFormation independent_functionElimination equalityTransitivity equalitySymmetry because_Cache imageElimination productEquality natural_numberEquality dependent_set_memberEquality imageMemberEquality applyLambdaEquality setElimination rename pointwiseFunctionality baseApply closedConclusion dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll addEquality addLevel impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    ([x]  \mleq{}  L  \mLeftarrow{}{}\mRightarrow{}  0  <  ||L||  \mwedge{}  (L[0]  =  x))



Date html generated: 2017_04_17-AM-08_46_22
Last ObjectModification: 2017_02_27-PM-05_04_04

Theory : list_1


Home Index