Nuprl Lemma : sum-partial-list-has-value
∀[T:Type]. ∀[L:T List]. ∀[f:T ⟶ partial(ℕ)].  ∀x:T. (f[x])↓ supposing (x ∈ L) supposing (Σ(f[L[i]] | i < ||L||))↓
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
partial: partial(T)
, 
nat: ℕ
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
has-value: (a)↓
, 
prop: ℙ
, 
squash: ↓T
, 
less_than: a < b
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
nat: ℕ
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
Lemmas referenced : 
partial_wf, 
nat_wf, 
list_wf, 
l_member_wf, 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
length_wf, 
int_seg_properties, 
select_wf, 
length_wf_nat, 
sum-partial-has-value, 
lelt_wf, 
int-value-type, 
le_wf, 
set-value-type, 
has-value_wf-partial, 
sum-partial-nat, 
full-omega-unsat, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
axiomSqleEquality, 
hypothesis, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
Error :functionIsType, 
Error :universeIsType, 
extract_by_obid, 
universeEquality, 
cumulativity, 
isect_memberFormation, 
lambdaFormation, 
imageElimination, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
rename, 
setElimination, 
because_Cache, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
approximateComputation, 
independent_functionElimination, 
equalityTransitivity
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:T  {}\mrightarrow{}  partial(\mBbbN{})].
    \mforall{}x:T.  (f[x])\mdownarrow{}  supposing  (x  \mmember{}  L)  supposing  (\mSigma{}(f[L[i]]  |  i  <  ||L||))\mdownarrow{}
Date html generated:
2019_06_20-PM-01_48_49
Last ObjectModification:
2018_10_15-PM-01_44_59
Theory : list_1
Home
Index