Nuprl Lemma : sum-partial-list-has-value

[T:Type]. ∀[L:T List]. ∀[f:T ⟶ partial(ℕ)].  ∀x:T. (f[x])↓ supposing (x ∈ L) supposing (f[L[i]] i < ||L||))↓


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) l_member: (x ∈ l) select: L[n] length: ||as|| list: List partial: partial(T) nat: has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] has-value: (a)↓ prop: squash: T less_than: a < b top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k guard: {T} int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] le: A ≤ B nat: cand: c∧ B l_member: (x ∈ l)
Lemmas referenced :  partial_wf nat_wf list_wf l_member_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf length_wf_nat sum-partial-has-value lelt_wf int-value-type le_wf set-value-type has-value_wf-partial sum-partial-nat full-omega-unsat equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality Error :isect_memberEquality_alt,  isectElimination axiomSqleEquality hypothesis Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  Error :functionIsType,  Error :universeIsType,  extract_by_obid universeEquality cumulativity isect_memberFormation lambdaFormation imageElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination productElimination natural_numberEquality independent_isectElimination rename setElimination because_Cache functionExtensionality applyEquality lambdaEquality dependent_set_memberEquality applyLambdaEquality hyp_replacement equalitySymmetry approximateComputation independent_functionElimination equalityTransitivity

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:T  {}\mrightarrow{}  partial(\mBbbN{})].
    \mforall{}x:T.  (f[x])\mdownarrow{}  supposing  (x  \mmember{}  L)  supposing  (\mSigma{}(f[L[i]]  |  i  <  ||L||))\mdownarrow{}



Date html generated: 2019_06_20-PM-01_48_49
Last ObjectModification: 2018_10_15-PM-01_44_59

Theory : list_1


Home Index