Nuprl Lemma : sum-partial-has-value

[n:ℕ]. ∀[f:ℕn ⟶ partial(ℕ)].  ∀i:ℕn. (f[i])↓ supposing (f[x] x < n))↓


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) partial: partial(T) int_seg: {i..j-} nat: has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] implies:  Q nat: prop: uimplies: supposing a all: x:A. B[x] has-value: (a)↓ top: Top guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False less_than: a < b less_than': less_than'(a;b) true: True squash: T subtype_rel: A ⊆B le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m sq_type: SQType(T)
Lemmas referenced :  uniform-comp-nat-induction nat_wf int_seg_wf partial_wf sum-partial-nat has-value_wf-partial set-value-type le_wf istype-int int-value-type sum-unroll istype-void int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-top subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le istype-lt subtype_partial_sqtype_base set_subtype_base int_subtype_base subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self less_than_wf value-type-has-value decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_base_sq int_seg_subtype_nat isect_wf all_wf uall_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule independent_functionElimination hypothesis lemma_by_obid lambdaEquality hypothesisEquality rename setElimination natural_numberEquality functionEquality applyEquality because_Cache intEquality independent_isectElimination Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  Error :functionIsType,  Error :lambdaEquality_alt,  dependent_functionElimination axiomSqleEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  voidElimination productElimination unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality independent_pairFormation lessCases axiomSqEquality imageMemberEquality baseClosed imageElimination Error :dependent_set_memberEquality_alt,  Error :productIsType,  addEquality minusEquality multiplyEquality callbyvalueAdd instantiate cumulativity Error :isectIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  partial(\mBbbN{})].    \mforall{}i:\mBbbN{}n.  (f[i])\mdownarrow{}  supposing  (\mSigma{}(f[x]  |  x  <  n))\mdownarrow{}



Date html generated: 2019_06_20-PM-01_18_19
Last ObjectModification: 2018_10_05-AM-11_01_46

Theory : int_2


Home Index