Nuprl Lemma : divides-iff-gcd

x,y:ℤ.  (x ⇐⇒ gcd(y;x) x ∈ ℤ)


Proof




Definitions occuring in Statement :  divides: a gcd: gcd(a;b) all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B gcd: gcd(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  bfalse: ff not: ¬A divides: a exists: x:A. B[x] sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top nequal: a ≠ b ∈  int_nzero: -o squash: T true: True
Lemmas referenced :  divides_wf equal-wf-base int_subtype_base eq_int_wf bool_wf assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf subtype_base_sq decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf divides_iff_rem_zero nequal_wf gcd_is_divisor_1 squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality sqequalRule baseApply closedConclusion baseClosed applyEquality because_Cache natural_numberEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination impliesFunctionality dependent_functionElimination instantiate cumulativity dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll remainderEquality dependent_set_memberEquality imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  gcd(y;x)  =  x)



Date html generated: 2018_05_21-PM-01_10_19
Last ObjectModification: 2018_01_28-PM-02_03_46

Theory : num_thy_1


Home Index