Nuprl Lemma : exp-equal-one

x:ℤ. ∀n:ℕ.  (x^n 1 ∈ ℤ ⇐⇒ (x 1 ∈ ℤ) ∨ (n 0 ∈ ℤ) ∨ ((x (-1) ∈ ℤ) ∧ ((n mod 2) 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  exp: i^n modulus: mod n nat: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q or: P ∨ Q subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a decidable: Dec(P) sq_type: SQType(T) guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False nat_plus: + le: A ≤ B not: ¬A uiff: uiff(P;Q) less_than': less_than'(a;b) true: True subtract: m cand: c∧ B squash: T less_than: a < b ifthenelse: if then else fi  bfalse: ff btrue: tt bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  equal-wf-T-base exp_wf2 or_wf equal-wf-base modulus_wf_int_mod subtype_rel_set int_mod_wf le_wf int-subtype-int_mod nat_wf decidable__equal_int subtype_base_sq int_subtype_base nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf exp-assoced-one decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf assoced_weakening assoced_elim subtype_rel-equal intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma equal_wf squash_wf true_wf exp-minusone iff_weakening_equal eq_int_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot exp-one exp0_lemma bool_cases_sqequal assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis baseClosed unionElimination because_Cache productEquality applyEquality sqequalRule natural_numberEquality lambdaEquality independent_isectElimination dependent_functionElimination setElimination rename instantiate cumulativity independent_functionElimination inrFormation inlFormation equalityTransitivity equalitySymmetry dependent_pairFormation isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality productElimination addEquality minusEquality applyLambdaEquality int_eqEquality imageElimination universeEquality equalityUniverse levelHypothesis imageMemberEquality promote_hyp impliesFunctionality equalityElimination

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (x\^{}n  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (n  =  0)  \mvee{}  ((x  =  (-1))  \mwedge{}  ((n  mod  2)  =  0)))



Date html generated: 2018_05_21-PM-01_06_14
Last ObjectModification: 2018_01_28-PM-02_02_12

Theory : num_thy_1


Home Index