Nuprl Lemma : exp-minusone

[n:ℕ]. ((-1)^n if (n mod =z 0) then else -1 fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n modulus: mod n nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: squash: T assert: b ifthenelse: if then else fi  eq_int: (i =z j) modulus: mod n btrue: tt true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q exp: i^n bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) nat_plus: + less_than: a < b less_than': less_than'(a;b) int_nzero: -o nequal: a ≠ b ∈  bnot: ¬bb
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf exp0_lemma equal_wf squash_wf true_wf ite_rw_true iff_weakening_equal decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf primrec-unroll eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot subtype_base_sq add-one-mod-2 subtract-add-cancel mod_bounds modulus_wf nequal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache minusEquality imageMemberEquality baseClosed productElimination unionElimination equalityElimination baseApply closedConclusion impliesFunctionality instantiate cumulativity dependent_set_memberEquality addLevel applyLambdaEquality promote_hyp productEquality

Latex:
\mforall{}[n:\mBbbN{}].  ((-1)\^{}n  =  if  (n  mod  2  =\msubz{}  0)  then  1  else  -1  fi  )



Date html generated: 2018_05_21-PM-01_05_15
Last ObjectModification: 2018_01_28-PM-02_01_49

Theory : num_thy_1


Home Index