Nuprl Lemma : isqrt-convex

a,b:ℕ.  (|isqrt(a) isqrt(b)| ≤ isqrt(|a b|))


Proof




Definitions occuring in Statement :  isqrt: isqrt(x) absval: |i| nat: le: A ≤ B all: x:A. B[x] subtract: m
Definitions unfolded in proof :  less_than': less_than'(a;b) le: A ≤ B prop: top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k ge: i ≥  nat: int_seg: {i..j-} guard: {T} uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] subtract: m rev_uimplies: rev_uimplies(P;Q) genrec-ap: genrec-ap integer-sqrt-ext isqrt: isqrt(x) squash: T label: ...$L... t true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) absval: |i|
Lemmas referenced :  nat_wf int_seg_wf false_wf isqrt_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties int_seg_subtype_nat isqrt-non-decreasing equal_wf less_than_wf le_wf int_term_value_subtract_lemma int_term_value_constant_lemma itermSubtract_wf itermConstant_wf subtract_wf isqrt-property mul-distributes mul-distributes-right add-associates minus-one-mul mul-associates mul-commutes mul-swap one-mul le_functionality add_functionality_wrt_le le_weakening int_term_value_mul_lemma int_term_value_add_lemma itermMultiply_wf itermAdd_wf int_formula_prop_eq_lemma intformeq_wf add_nat_wf multiply_functionality_wrt_le add-commutes add-swap two-mul less_than_functionality decidable__lt full-omega-unsat istype-int istype-void squash_wf true_wf istype-universe absval_pos decidable__equal_int iff_weakening_equal absval-diff-symmetry absval-non-neg subtype_base_sq int_subtype_base istype-false absval_wf add-mul-special zero-mul integer-sqrt-ext
Rules used in proof :  cut addEquality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation unionElimination dependent_functionElimination productElimination rename setElimination sqequalRule hypothesis independent_isectElimination because_Cache natural_numberEquality applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination equalitySymmetry equalityTransitivity multiplyEquality productEquality dependent_set_memberEquality minusEquality applyLambdaEquality Error :lambdaFormation_alt,  Error :inhabitedIsType,  Error :universeIsType,  Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :productIsType,  hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed instantiate cumulativity

Latex:
\mforall{}a,b:\mBbbN{}.    (|isqrt(a)  -  isqrt(b)|  \mleq{}  isqrt(|a  -  b|))



Date html generated: 2019_06_20-PM-02_37_32
Last ObjectModification: 2019_06_12-PM-00_26_11

Theory : num_thy_1


Home Index