Nuprl Lemma : twice-triangular

[n:ℕ]. ((2 t(n)) ((n n) n) ∈ ℤ)


Proof




Definitions occuring in Statement :  triangular-num: t(n) nat: uall: [x:A]. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] triangular-num: t(n) member: t ∈ T nat: int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top squash: T nat_plus: + less_than: a < b less_than': less_than'(a;b) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q subtract: m bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] bnot: ¬bb assert: b
Lemmas referenced :  div_rem_sum subtype_base_sq int_subtype_base istype-int nequal_wf nat_properties decidable__equal_int add-is-int-iff multiply-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf false_wf nat_wf equal_wf istype-universe rem_mul decidable__le intformle_wf int_formula_prop_le_lemma le_wf less_than_wf iff_weakening_equal rem_add1 eq_int_wf eqtt_to_assert assert_of_eq_int rem_base_case decidable__lt intformless_wf int_formula_prop_less_lemma zero_ann eqff_to_assert set_subtype_base bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int rem_bounds_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality setElimination rename hypothesisEquality hypothesis addEquality because_Cache natural_numberEquality Error :dependent_set_memberEquality_alt,  Error :lambdaFormation_alt,  instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination Error :equalityIsType4,  baseClosed Error :universeIsType,  unionElimination pointwiseFunctionality promote_hyp sqequalRule baseApply closedConclusion productElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  independent_pairFormation applyEquality imageElimination Error :inhabitedIsType,  universeEquality imageMemberEquality remainderEquality equalityElimination Error :equalityIsType2,  Error :equalityIsType1

Latex:
\mforall{}[n:\mBbbN{}].  ((2  *  t(n))  =  ((n  *  n)  +  n))



Date html generated: 2019_06_20-PM-02_38_19
Last ObjectModification: 2019_06_12-PM-00_26_43

Theory : num_thy_1


Home Index