Nuprl Lemma : twice-triangular
∀[n:ℕ]. ((2 * t(n)) = ((n * n) + n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
triangular-num: t(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
triangular-num: t(n)
, 
member: t ∈ T
, 
nat: ℕ
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
div_rem_sum, 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
nat_properties, 
decidable__equal_int, 
add-is-int-iff, 
multiply-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
false_wf, 
nat_wf, 
equal_wf, 
istype-universe, 
rem_mul, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_wf, 
less_than_wf, 
iff_weakening_equal, 
rem_add1, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
rem_base_case, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
zero_ann, 
eqff_to_assert, 
set_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rem_bounds_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
addEquality, 
because_Cache, 
natural_numberEquality, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
Error :equalityIsType4, 
baseClosed, 
Error :universeIsType, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
sqequalRule, 
baseApply, 
closedConclusion, 
productElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
independent_pairFormation, 
applyEquality, 
imageElimination, 
Error :inhabitedIsType, 
universeEquality, 
imageMemberEquality, 
remainderEquality, 
equalityElimination, 
Error :equalityIsType2, 
Error :equalityIsType1
Latex:
\mforall{}[n:\mBbbN{}].  ((2  *  t(n))  =  ((n  *  n)  +  n))
Date html generated:
2019_06_20-PM-02_38_19
Last ObjectModification:
2019_06_12-PM-00_26_43
Theory : num_thy_1
Home
Index