Nuprl Lemma : shadow-vec-property
∀[as,bs:ℤ List]. ∀[i:ℕ||as||].
  (∀[xs:ℤ List]
     0 ≤ shadow-vec(i;as;bs) ⋅ xs\i supposing (||xs|| = ||as|| ∈ ℤ) ∧ (0 ≤ as ⋅ xs) ∧ (0 ≤ bs ⋅ xs)) supposing 
     ((bs[i] ≤ 0) and 
     (0 ≤ as[i]) and 
     (||as|| = ||bs|| ∈ ℤ))
Proof
Definitions occuring in Statement : 
shadow-vec: shadow-vec(i;as;bs)
, 
list-delete: as\i
, 
integer-dot-product: as ⋅ bs
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
guard: {T}
, 
nat: ℕ
, 
int-vec-mul: a * as
, 
shadow-vec: shadow-vec(i;as;bs)
, 
has-value: (a)↓
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
sq_type: SQType(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uiff: uiff(P;Q)
, 
top: Top
Lemmas referenced : 
add_functionality_wrt_le, 
select_wf, 
le_reflexive, 
le_witness_for_triv, 
list_subtype_base, 
int_subtype_base, 
istype-le, 
integer-dot-product_wf, 
sq_stable__le, 
less_than_transitivity1, 
length_wf, 
le_weakening, 
istype-int, 
int_seg_wf, 
list_wf, 
minus-one-mul, 
zero-add, 
add-commutes, 
add-mul-special, 
zero-mul, 
mul_preserves_le, 
minus-one-mul-top, 
int-dot-mul-left, 
mul-associates, 
mul-commutes, 
add_nat_wf, 
int-vec-mul_wf, 
int-dot-add-left, 
map-length, 
list-valueall-type, 
int-valueall-type, 
evalall-reduce, 
value-type-has-value, 
list-value-type, 
int-vec-add_wf, 
int-dot-select, 
int_seg_subtype_nat, 
istype-false, 
less_than_wf, 
squash_wf, 
true_wf, 
length-int-vec-add, 
length-int-vec-mul, 
equal_wf, 
istype-universe, 
iff_weakening_equal, 
subtype_rel_self, 
subtype_base_sq, 
select-int-vec-mul, 
lelt_wf, 
set_subtype_base, 
add-is-int-iff, 
multiply-is-int-iff, 
false_wf, 
select-int-vec-add, 
list-delete_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
because_Cache, 
minusEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
intEquality, 
sqequalBase, 
setElimination, 
rename, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_pairFormation, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
imageElimination, 
universeIsType, 
multiplyEquality, 
Error :memTop, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
callbyvalueReduce, 
lambdaEquality_alt, 
instantiate, 
universeEquality, 
cumulativity, 
dependent_set_memberEquality, 
lambdaEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaFormation
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].
    (\mforall{}[xs:\mBbbZ{}  List]
          0  \mleq{}  shadow-vec(i;as;bs)  \mcdot{}  xs\mbackslash{}i 
          supposing  (||xs||  =  ||as||)  \mwedge{}  (0  \mleq{}  as  \mcdot{}  xs)  \mwedge{}  (0  \mleq{}  bs  \mcdot{}  xs))  supposing 
          ((bs[i]  \mleq{}  0)  and 
          (0  \mleq{}  as[i])  and 
          (||as||  =  ||bs||))
Date html generated:
2020_05_19-PM-09_38_13
Last ObjectModification:
2019_12_31-PM-00_59_38
Theory : omega
Home
Index