Nuprl Lemma : shadow-vec-property

[as,bs:ℤ List]. ∀[i:ℕ||as||].
  (∀[xs:ℤ List]
     0 ≤ shadow-vec(i;as;bs) ⋅ xs\i supposing (||xs|| ||as|| ∈ ℤ) ∧ (0 ≤ as ⋅ xs) ∧ (0 ≤ bs ⋅ xs)) supposing 
     ((bs[i] ≤ 0) and 
     (0 ≤ as[i]) and 
     (||as|| ||bs|| ∈ ℤ))


Proof




Definitions occuring in Statement :  shadow-vec: shadow-vec(i;as;bs) list-delete: as\i integer-dot-product: as ⋅ bs select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q all: x:A. B[x] le: A ≤ B subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B sq_stable: SqStable(P) implies:  Q squash: T guard: {T} nat: int-vec-mul: as shadow-vec: shadow-vec(i;as;bs) has-value: (a)↓ less_than': less_than'(a;b) false: False not: ¬A prop: true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] uiff: uiff(P;Q) top: Top
Lemmas referenced :  add_functionality_wrt_le select_wf le_reflexive le_witness_for_triv list_subtype_base int_subtype_base istype-le integer-dot-product_wf sq_stable__le less_than_transitivity1 length_wf le_weakening istype-int int_seg_wf list_wf minus-one-mul zero-add add-commutes add-mul-special zero-mul mul_preserves_le minus-one-mul-top int-dot-mul-left mul-associates mul-commutes add_nat_wf int-vec-mul_wf int-dot-add-left map-length list-valueall-type int-valueall-type evalall-reduce value-type-has-value list-value-type int-vec-add_wf int-dot-select int_seg_subtype_nat istype-false less_than_wf squash_wf true_wf length-int-vec-add length-int-vec-mul equal_wf istype-universe iff_weakening_equal subtype_rel_self subtype_base_sq select-int-vec-mul lelt_wf set_subtype_base add-is-int-iff multiply-is-int-iff false_wf select-int-vec-add list-delete_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination because_Cache minusEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry sqequalRule productIsType equalityIstype inhabitedIsType baseApply closedConclusion baseClosed hypothesisEquality applyEquality intEquality sqequalBase setElimination rename isect_memberEquality_alt isectIsTypeImplies independent_pairFormation natural_numberEquality independent_functionElimination imageMemberEquality imageElimination universeIsType multiplyEquality Error :memTop,  dependent_set_memberEquality_alt lambdaFormation_alt callbyvalueReduce lambdaEquality_alt instantiate universeEquality cumulativity dependent_set_memberEquality lambdaEquality voidEquality voidElimination isect_memberEquality lambdaFormation

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].
    (\mforall{}[xs:\mBbbZ{}  List]
          0  \mleq{}  shadow-vec(i;as;bs)  \mcdot{}  xs\mbackslash{}i 
          supposing  (||xs||  =  ||as||)  \mwedge{}  (0  \mleq{}  as  \mcdot{}  xs)  \mwedge{}  (0  \mleq{}  bs  \mcdot{}  xs))  supposing 
          ((bs[i]  \mleq{}  0)  and 
          (0  \mleq{}  as[i])  and 
          (||as||  =  ||bs||))



Date html generated: 2020_05_19-PM-09_38_13
Last ObjectModification: 2019_12_31-PM-00_59_38

Theory : omega


Home Index