Nuprl Lemma : type-monotone-fun_exp
∀[F:Type ⟶ Type]. ∀[n,m:ℕ].  (F^n Void) ⊆r (F^m Void) supposing n ≤ m supposing Monotone(T.F[T])
Proof
Definitions occuring in Statement : 
type-monotone: Monotone(T.F[T]), 
fun_exp: f^n, 
nat: ℕ, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
apply: f a, 
function: x:A ⟶ B[x], 
void: Void, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
and: P ∧ Q, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
top: Top, 
prop: ℙ, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
nat_plus: ℕ+, 
less_than: a < b, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
decidable: Dec(P), 
or: P ∨ Q, 
ge: i ≥ j , 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
compose: f o g, 
type-monotone: Monotone(T.F[T]), 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
subtract_wf, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
fun_exp_wf, 
fun_exp_add_apply, 
iff_weakening_equal, 
equal_wf, 
type-monotone_wf, 
not-le-2, 
add_functionality_wrt_le, 
le_reflexive, 
add-associates, 
minus-zero, 
one-mul, 
zero-add, 
add-commutes, 
two-mul, 
mul-distributes-right, 
omega-shadow, 
less_than_wf, 
mul-distributes, 
mul-associates, 
le-add-cancel, 
nat_properties, 
decidable__le, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
fun_exp0_lemma, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-minus, 
le_weakening2, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_weakening, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-equal-2, 
fun_exp_unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
minusEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaFormation, 
imageElimination, 
universeEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
functionEquality, 
addEquality, 
multiplyEquality, 
independent_pairFormation, 
unionElimination, 
intWeakElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[n,m:\mBbbN{}].    (F\^{}n  Void)  \msubseteq{}r  (F\^{}m  Void)  supposing  n  \mleq{}  m  supposing  Monotone(T.F[T])
Date html generated:
2017_04_14-AM-07_37_28
Last ObjectModification:
2017_02_27-PM-03_09_41
Theory : subtype_1
Home
Index