Nuprl Lemma : FormSafe1-Fvs-subset
∀C:Type. ∀phi:Form(C). ∀vs:Atom List.  ((FormSafe1(phi) vs) ⇒ l_subset(Atom;vs;FormFvs(phi)))
Proof
Definitions occuring in Statement : 
FormSafe1: FormSafe1(f), 
FormFvs: FormFvs(f), 
Form: Form(C), 
l_subset: l_subset(T;as;bs), 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
atom: Atom, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
FormFvs: FormFvs(f), 
FormSafe1: FormSafe1(f), 
FormVar: Vname, 
Form_ind: Form_ind, 
false: False, 
FormConst: Const(value), 
FormSet: {var | phi}, 
FormEqual: left = right, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
and: P ∧ Q, 
or: P ∨ Q, 
FormMember: element ∈ set, 
FormAnd: left ∧ right), 
FormOr: left ∨ right, 
FormNot: ¬(body), 
FormAll: ∀var. body, 
FormExists: ∃var. body, 
guard: {T}, 
uiff: uiff(P;Q), 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
l_subset: l_subset(T;as;bs), 
sq_type: SQType(T), 
set-equal: set-equal(T;x;y), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
FormVar-name: FormVar-name(v), 
pi2: snd(t), 
FormVar?: FormVar?(v), 
pi1: fst(t), 
assert: ↑b, 
bfalse: ff, 
bnot: ¬bb, 
not: ¬A
Lemmas referenced : 
Form-induction, 
all_wf, 
list_wf, 
FormSafe1_wf, 
l_subset_wf, 
FormFvs_wf, 
Form_wf, 
false_wf, 
or_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
exists_wf, 
set-equal_wf, 
cons_wf, 
nil_wf, 
FormVar?_wf, 
equal-wf-T-base, 
FormVar-name_wf, 
atom_subtype_base, 
not_wf, 
l_member_wf, 
append_wf, 
l_disjoint_wf, 
assert_of_null, 
squash_wf, 
true_wf, 
l-union_wf, 
atom-deq_wf, 
iff_weakening_equal, 
l_subset_nil_left, 
subtype_base_sq, 
member_singleton, 
member-union, 
Form-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
cons_member, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
member_append, 
equal-wf-base, 
member_filter, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
atomEquality, 
functionEquality, 
applyEquality, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
productEquality, 
productElimination, 
universeEquality, 
unionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
dependent_functionElimination, 
inlFormation, 
inrFormation, 
promote_hyp, 
hypothesis_subsumption, 
tokenEquality, 
equalityElimination, 
dependent_pairFormation, 
independent_pairFormation, 
impliesFunctionality, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}C:Type.  \mforall{}phi:Form(C).  \mforall{}vs:Atom  List.    ((FormSafe1(phi)  vs)  {}\mRightarrow{}  l\_subset(Atom;vs;FormFvs(phi)))
Date html generated:
2018_05_21-PM-11_28_44
Last ObjectModification:
2017_10_12-AM-00_45_16
Theory : PZF
Home
Index