Nuprl Lemma : lastn-cases

[L:Top List]. ∀[n:ℤ].  (lastn(n;L) if ||L|| ≤then if n ≤then [] else lastn(n;tl(L)) fi )


Proof




Definitions occuring in Statement :  lastn: lastn(n;L) length: ||as|| tl: tl(l) nil: [] list: List le_int: i ≤j ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lastn: lastn(n;L) nth_tl: nth_tl(n;as) le: A ≤ B and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A all: x:A. B[x] top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} nat: decidable: Dec(P) or: P ∨ Q cons: [a b] sq_type: SQType(T)
Lemmas referenced :  list_wf top_wf le_int_wf length_wf bool_wf equal-wf-T-base assert_wf le_wf subtract_wf lt_int_wf less_than_wf bnot_wf satisfiable-full-omega-tt intformand_wf intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base int_subtype_base uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf nth_tl_is_nil decidable__le intformnot_wf int_formula_prop_not_lemma tl_wf list-cases length_of_nil_lemma reduce_tl_nil_lemma product_subtype_list length_of_cons_lemma reduce_tl_cons_lemma add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf subtype_base_sq decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom intEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache extract_by_obid equalityTransitivity equalitySymmetry baseClosed natural_numberEquality productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll imageElimination baseApply closedConclusion applyEquality lambdaFormation unionElimination equalityElimination independent_functionElimination dependent_set_memberEquality promote_hyp hypothesis_subsumption addEquality pointwiseFunctionality rename instantiate cumulativity

Latex:
\mforall{}[L:Top  List].  \mforall{}[n:\mBbbZ{}].
    (lastn(n;L)  \msim{}  if  ||L||  \mleq{}z  n  then  L
    if  n  \mleq{}z  0  then  []
    else  lastn(n;tl(L))
    fi  )



Date html generated: 2018_05_21-PM-06_31_00
Last ObjectModification: 2017_07_26-PM-04_51_02

Theory : general


Home Index