Nuprl Lemma : twice-triangular

[n:ℕ]. ((2 t(n)) ((n n) n) ∈ ℤ)


Proof




Definitions occuring in Statement :  triangular-num: t(n) nat: uall: [x:A]. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] triangular-num: t(n) member: t ∈ T nat: int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top squash: T nat_plus: + less_than: a < b less_than': less_than'(a;b) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q subtract: m bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  div_rem_sum subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf nat_properties decidable__equal_int add-is-int-iff multiply-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf false_wf nat_wf equal_wf rem_mul decidable__le intformle_wf int_formula_prop_le_lemma le_wf less_than_wf iff_weakening_equal rem_add1 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int rem_base_case decidable__lt intformless_wf int_formula_prop_less_lemma zero_ann eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int rem_bounds_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality setElimination rename hypothesisEquality hypothesis addEquality because_Cache natural_numberEquality dependent_set_memberEquality addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed unionElimination pointwiseFunctionality promote_hyp sqequalRule baseApply closedConclusion productElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidEquality independent_pairFormation applyEquality imageElimination imageMemberEquality remainderEquality equalityElimination

Latex:
\mforall{}[n:\mBbbN{}].  ((2  *  t(n))  =  ((n  *  n)  +  n))



Date html generated: 2018_05_21-PM-07_53_47
Last ObjectModification: 2018_05_19-PM-04_52_27

Theory : general


Home Index