Nuprl Lemma : fps-scalar-mul-property
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng].
    ((IsAction(|r|;*;1;PowerSeries(X;r);λc,f. (c)*f)
    ∧ IsBilinear(|r|;PowerSeries(X;r);PowerSeries(X;r);+r;λf,g. (f+g);λf,g. (f+g);λc,f. (c)*f))
    ∧ (∀c:|r|. Dist1op2opLR(PowerSeries(X;r);λf.(c)*f;λf,g. (f*g)))) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-scalar-mul: (c)*f
, 
fps-mul: (f*g)
, 
fps-add: (f+g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
universe: Type
, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
action_p: IsAction(A;x;e;S;f)
, 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
crng: CRng
, 
comm: Comm(T;op)
, 
rng: Rng
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
action_p: IsAction(A;x;e;S;f)
, 
all: ∀x:A. B[x]
, 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
group_p: IsGroup(T;op;id;inv)
, 
infix_ap: x f y
, 
uiff: uiff(P;Q)
, 
fps-scalar-mul: (c)*f
, 
fps-coeff: f[b]
, 
fps-add: (f+g)
, 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
top: Top
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
rng_plus_comm, 
crng_properties, 
rng_properties, 
rng_all_properties, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
group_p_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
power-series_wf, 
fps-ext, 
fps-scalar-mul_wf, 
bag_wf, 
fps-add_wf, 
fps-mul_wf, 
infix_ap_wf, 
bag-summation_wf, 
bag-partitions_wf, 
pi1_wf_top, 
pi2_wf, 
equal_wf, 
bag-summation-linear1-right, 
iff_weakening_equal, 
bag-summation-equal, 
rng_times_assoc, 
bag-member_wf, 
squash_wf, 
true_wf, 
crng_times_comm, 
crng_times_ac_1, 
rng_times_one, 
rng_times_over_plus, 
assoc_wf, 
comm_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
productElimination, 
because_Cache, 
independent_pairFormation, 
dependent_pairFormation, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
lambdaFormation, 
independent_isectElimination, 
natural_numberEquality, 
productEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
functionEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].
        ((IsAction(|r|;*;1;PowerSeries(X;r);\mlambda{}c,f.  (c)*f)
        \mwedge{}  IsBilinear(|r|;PowerSeries(X;r);PowerSeries(X;r);+r;\mlambda{}f,g.  (f+g);\mlambda{}f,g.  (f+g);\mlambda{}c,f.  (c)*f))
        \mwedge{}  (\mforall{}c:|r|.  Dist1op2opLR(PowerSeries(X;r);\mlambda{}f.(c)*f;\mlambda{}f,g.  (f*g)))) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_57_26
Last ObjectModification:
2017_07_26-PM-06_33_21
Theory : power!series
Home
Index