Nuprl Lemma : average-q-between
∀[a,b:ℚ].  a < (a + b/2) < b supposing a < b
Proof
Definitions occuring in Statement : 
q-between: a < b < c, 
qless: r < s, 
qdiv: (r/s), 
qadd: r + s, 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
q-between: a < b < c, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
not: ¬A, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
eq_int: (i =z j), 
bfalse: ff, 
assert: ↑b, 
false: False, 
prop: ℙ, 
qinv: 1/r, 
qmul: r * s, 
guard: {T}, 
all: ∀x:A. B[x], 
sq_type: SQType(T), 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
true: True, 
subtype_rel: A ⊆r B, 
qdiv: (r/s), 
squash: ↓T, 
qadd: r + s, 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
set_blt: a <b b, 
band: p ∧b q, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
lt_int: i <z j, 
bnot: ¬bb, 
rev_uimplies: rev_uimplies(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
qless_witness, 
qdiv_wf, 
assert-qeq, 
qless_wf, 
rationals_wf, 
istype-void, 
qmul_wf, 
qadd_wf, 
qinv_wf, 
int-subtype-rationals, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
equal-wf-base, 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
uiff_transitivity, 
uiff_transitivity2, 
qadd_preserves_qless, 
squash_wf, 
true_wf, 
qmul_over_plus_qrng, 
qmul_comm_qrng, 
qinv_thru_op_q, 
mon_assoc_q, 
qadd_ac_1_q, 
qadd_comm_q, 
qinverse_q, 
qadd_inv_assoc_q, 
mon_ident_q, 
qmul_assoc, 
qmul_ident, 
q_distrib, 
qmul-zero-div, 
qmul_preserves_qless, 
qmul-ident-div, 
false_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
equalityIsType4, 
inhabitedIsType, 
baseClosed, 
independent_functionElimination, 
universeIsType, 
isect_memberEquality_alt, 
dependent_functionElimination, 
intEquality, 
cumulativity, 
instantiate, 
addLevel, 
dependent_set_memberEquality, 
minusEquality, 
promote_hyp, 
applyEquality, 
natural_numberEquality, 
lemma_by_obid, 
lambdaFormation, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt
Latex:
\mforall{}[a,b:\mBbbQ{}].    a  <  (a  +  b/2)  <  b  supposing  a  <  b
Date html generated:
2019_10_16-PM-00_33_52
Last ObjectModification:
2018_10_10-AM-11_05_03
Theory : rationals
Home
Index