Nuprl Lemma : has-interior-point-implies
∀[k:ℕ]. ∀[c,a:ℚCube(k)].
  (has-interior-point(k;c;a) ⇒ dim(c) < dim(a) ⇒ (∀d:ℚCube(k). ((↑is-half-cube(k;c;d)) ⇒ (¬d ≤ a))))
Proof
Definitions occuring in Statement : 
rat-cube-dimension: dim(c), 
has-interior-point: has-interior-point(k;c;a), 
is-half-cube: is-half-cube(k;h;c), 
rat-cube-face: c ≤ d, 
rational-cube: ℚCube(k), 
nat: ℕ, 
assert: ↑b, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
not: ¬A, 
false: False, 
has-interior-point: has-interior-point(k;c;a), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
true: True, 
nat: ℕ, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
squash: ↓T, 
guard: {T}, 
lelt: i ≤ j < k, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q)
Lemmas referenced : 
rat-point-in-half-cube, 
rat-cube-face_wf, 
istype-assert, 
is-half-cube_wf, 
istype-less_than, 
rat-cube-dimension_wf, 
has-interior-point_wf, 
rational-cube_wf, 
istype-nat, 
rat-point-in-cube-interior-not-in-face, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
half-cube-dimension, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
int_seg_properties, 
subtype_rel_self, 
iff_weakening_equal, 
inhabited-rat-cube-iff-point, 
rat-point-in-cube_wf, 
inhabited-rat-cube_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
universeIsType, 
independent_functionElimination, 
voidElimination, 
inhabitedIsType, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
intEquality, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
minusEquality, 
addEquality, 
applyLambdaEquality, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c,a:\mBbbQ{}Cube(k)].
    (has-interior-point(k;c;a)
    {}\mRightarrow{}  dim(c)  <  dim(a)
    {}\mRightarrow{}  (\mforall{}d:\mBbbQ{}Cube(k).  ((\muparrow{}is-half-cube(k;c;d))  {}\mRightarrow{}  (\mneg{}d  \mleq{}  a))))
Date html generated:
2020_05_20-AM-09_19_55
Last ObjectModification:
2019_11_02-PM-07_43_39
Theory : rationals
Home
Index