Nuprl Lemma : rat-point-in-half-cube
∀[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[c,d:ℚCube(k)].
  (rat-point-in-cube(k;x;c)) supposing (rat-point-in-cube(k;x;d) and (↑is-half-cube(k;d;c)))
Proof
Definitions occuring in Statement : 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rational-cube: ℚCube(k)
, 
implies: P 
⇒ Q
, 
rational-interval: ℚInterval
, 
is-half-interval: is-half-interval(I;J)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
nat: ℕ
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qge: a ≥ b
Lemmas referenced : 
assert-is-half-cube, 
qle_witness, 
rat-point-in-cube_wf, 
istype-assert, 
is-half-cube_wf, 
rational-cube_wf, 
int_seg_wf, 
rationals_wf, 
istype-nat, 
qle_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
qavg_wf, 
assert_wf, 
bor_wf, 
qeq_wf2, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert-qeq, 
bfalse_wf, 
equal_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_band, 
qle_functionality_wrt_implies, 
qle_weakening_eq_qorder, 
qavg-qle-iff-1, 
qle-qavg-iff-1, 
qle_transitivity_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
inhabitedIsType, 
sqequalRule, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
lambdaEquality_alt, 
independent_pairEquality, 
functionIsTypeImplies, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
natural_numberEquality, 
setElimination, 
rename, 
unionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_pairFormation, 
unionIsType, 
productIsType, 
cumulativity, 
unionEquality, 
productEquality, 
inlFormation_alt, 
promote_hyp, 
inrFormation_alt, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].
    (rat-point-in-cube(k;x;c))  supposing  (rat-point-in-cube(k;x;d)  and  (\muparrow{}is-half-cube(k;d;c)))
Date html generated:
2020_05_20-AM-09_18_18
Last ObjectModification:
2020_01_04-PM-10_27_54
Theory : rationals
Home
Index