Nuprl Lemma : rat-point-in-half-cube

[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[c,d:ℚCube(k)].
  (rat-point-in-cube(k;x;c)) supposing (rat-point-in-cube(k;x;d) and (↑is-half-cube(k;d;c)))


Proof




Definitions occuring in Statement :  rat-point-in-cube: rat-point-in-cube(k;x;c) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) rationals: int_seg: {i..j-} nat: assert: b uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rat-point-in-cube: rat-point-in-cube(k;x;c) all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q rational-cube: Cube(k) implies:  Q rational-interval: Interval is-half-interval: is-half-interval(I;J) pi1: fst(t) pi2: snd(t) prop: nat: cand: c∧ B or: P ∨ Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) bfalse: ff band: p ∧b q ifthenelse: if then else fi  rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b
Lemmas referenced :  assert-is-half-cube qle_witness rat-point-in-cube_wf istype-assert is-half-cube_wf rational-cube_wf int_seg_wf rationals_wf istype-nat qle_wf squash_wf true_wf subtype_rel_self iff_weakening_equal qavg_wf assert_wf bor_wf qeq_wf2 bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert-qeq bfalse_wf equal_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_band qle_functionality_wrt_implies qle_weakening_eq_qorder qavg-qle-iff-1 qle-qavg-iff-1 qle_transitivity_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution lambdaFormation_alt hypothesis dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination productElimination independent_isectElimination applyEquality inhabitedIsType sqequalRule equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination because_Cache lambdaEquality_alt independent_pairEquality functionIsTypeImplies universeIsType isect_memberEquality_alt isectIsTypeImplies functionIsType natural_numberEquality setElimination rename unionElimination imageElimination imageMemberEquality baseClosed instantiate universeEquality independent_pairFormation unionIsType productIsType cumulativity unionEquality productEquality inlFormation_alt promote_hyp inrFormation_alt hyp_replacement applyLambdaEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].
    (rat-point-in-cube(k;x;c))  supposing  (rat-point-in-cube(k;x;d)  and  (\muparrow{}is-half-cube(k;d;c)))



Date html generated: 2020_05_20-AM-09_18_18
Last ObjectModification: 2020_01_04-PM-10_27_54

Theory : rationals


Home Index