Nuprl Lemma : is-half-cube-sub-cube
∀[k:ℕ]. ∀h,c:ℚCube(k).  (rat-sub-cube(k;h;c)) supposing ((↑is-half-cube(k;h;c)) and (↑Inhabited(c)))
Proof
Definitions occuring in Statement : 
inhabited-rat-cube: Inhabited(c), 
is-half-cube: is-half-cube(k;h;c), 
rat-sub-cube: rat-sub-cube(k;a;b), 
rational-cube: ℚCube(k), 
nat: ℕ, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
rational-cube: ℚCube(k), 
implies: P ⇒ Q, 
rat-sub-cube: rat-sub-cube(k;a;b), 
nat: ℕ, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Lemmas referenced : 
assert_witness, 
inhabited-rat-interval_wf, 
is-half-interval_wf, 
is-half-interval-sub-interval, 
int_seg_wf, 
istype-assert, 
rational-cube_wf, 
istype-nat, 
iff_weakening_uiff, 
assert_wf, 
inhabited-rat-cube_wf, 
assert-inhabited-rat-cube, 
is-half-cube_wf, 
assert-is-half-cube
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
independent_isectElimination, 
because_Cache, 
functionIsType, 
universeIsType, 
natural_numberEquality, 
setElimination, 
functionEquality, 
productElimination
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}h,c:\mBbbQ{}Cube(k).    (rat-sub-cube(k;h;c))  supposing  ((\muparrow{}is-half-cube(k;h;c))  and  (\muparrow{}Inhabited(c)))
Date html generated:
2020_05_20-AM-09_18_31
Last ObjectModification:
2019_11_14-PM-08_16_42
Theory : rationals
Home
Index