Nuprl Lemma : lower-rc-face-dimension
∀k:ℕ. ∀c:ℚCube(k). ∀j:ℕk.
  ((↑Inhabited(c)) ⇒ (dim(lower-rc-face(c;j)) = if (dim(c j) =z 0) then dim(c) else dim(c) - 1 fi  ∈ ℤ))
Proof
Definitions occuring in Statement : 
lower-rc-face: lower-rc-face(c;j), 
rat-cube-dimension: dim(c), 
inhabited-rat-cube: Inhabited(c), 
rational-cube: ℚCube(k), 
rat-interval-dimension: dim(I), 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
inhabited-rat-interval: Inhabited(I), 
rat-interval-dimension: dim(I), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
nequal: a ≠ b ∈ T , 
prop: ℙ, 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
ge: i ≥ j , 
pi1: fst(t), 
rational-interval: ℚInterval, 
not: ¬A, 
less_than': less_than'(a;b), 
lower-rc-face: lower-rc-face(c;j), 
true: True, 
so_apply: x[s], 
squash: ↓T, 
less_than: a < b, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
bfalse: ff, 
rat-cube-dimension: dim(c), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
rational-cube: ℚCube(k), 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__equal_int, 
general_arith_equation1, 
int_term_value_constant_lemma, 
itermConstant_wf, 
qless_wf, 
nequal_wf, 
q_le_wf, 
assert-q_less-eq, 
q_less_wf, 
istype-nat, 
rat-interval-dimension-single, 
iff_weakening_equal, 
inhabited-lower-rc-face, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
subtract_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
int_seg_properties, 
rat-point-interval_wf, 
istype-false, 
int_seg_subtype_nat, 
Error :isolate_summand2, 
ifthenelse_wf, 
rational-interval_wf, 
subtype_rel_self, 
lower-rc-face_wf, 
sum_wf, 
int_seg_wf, 
inhabited-rat-cube_wf, 
istype-assert, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
rat-interval-dimension_wf, 
eq_int_wf, 
assert-inhabited-rat-cube
Rules used in proof : 
functionIsType, 
addEquality, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
independent_pairFormation, 
minusEquality, 
imageElimination, 
functionEquality, 
lambdaEquality_alt, 
intEquality, 
natural_numberEquality, 
universeIsType, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
equalityIstype, 
dependent_pairFormation_alt, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
inhabitedIsType, 
rename, 
setElimination, 
sqequalRule, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).  \mforall{}j:\mBbbN{}k.
    ((\muparrow{}Inhabited(c))
    {}\mRightarrow{}  (dim(lower-rc-face(c;j))  =  if  (dim(c  j)  =\msubz{}  0)  then  dim(c)  else  dim(c)  -  1  fi  ))
Date html generated:
2019_10_29-AM-07_56_23
Last ObjectModification:
2019_10_17-PM-05_13_17
Theory : rationals
Home
Index