Nuprl Lemma : qsum-qle
∀[a,b:ℤ]. ∀[E,F:{a..b-} ⟶ ℚ].  Σa ≤ j < b. E[j] ≤ Σa ≤ j < b. F[j] supposing ∀j:ℤ. ((a ≤ j) 
⇒ j < b 
⇒ (E[j] ≤ F[j]))
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qle: r ≤ s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
true: True
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
qsum: Σa ≤ j < b. E[j]
, 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i]
, 
add_grp_of_rng: r↓+gp
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
grp_id: e
, 
qrng: <ℚ+*>
, 
rng_plus: +r
, 
rng_zero: 0
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
int_le_to_int_upper, 
all_wf, 
int_seg_wf, 
rationals_wf, 
le_wf, 
less_than_wf, 
qle_wf, 
lelt_wf, 
qsum_wf, 
int_upper_wf, 
int_upper_ind, 
subtract_wf, 
qle_reflexivity, 
int-subtype-rationals, 
squash_wf, 
true_wf, 
sum_unroll_base_q, 
iff_weakening_equal, 
int_upper_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
sum_unroll_hi_q, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_rel_dep_function, 
int_seg_subtype, 
subtype_rel_self, 
grp_op_preserves_le_qorder, 
qle_transitivity_qorder, 
qadd_wf, 
qadd_com, 
qle_witness, 
lt_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
intEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
instantiate, 
natural_numberEquality, 
addEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
isect_memberFormation, 
baseApply, 
closedConclusion, 
equalityElimination
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E,F:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    \mSigma{}a  \mleq{}  j  <  b.  E[j]  \mleq{}  \mSigma{}a  \mleq{}  j  <  b.  F[j]  supposing  \mforall{}j:\mBbbZ{}.  ((a  \mleq{}  j)  {}\mRightarrow{}  j  <  b  {}\mRightarrow{}  (E[j]  \mleq{}  F[j]))
Date html generated:
2018_05_21-PM-11_59_43
Last ObjectModification:
2017_07_26-PM-06_48_55
Theory : rationals
Home
Index