Nuprl Lemma : qsum-qle

[a,b:ℤ]. ∀[E,F:{a..b-} ⟶ ℚ].  Σa ≤ j < b. E[j] ≤ Σa ≤ j < b. F[j] supposing ∀j:ℤ((a ≤ j)  j <  (E[j] ≤ F[j]))


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s rationals: int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_upper: {i...} implies:  Q prop: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q guard: {T} true: True subtype_rel: A ⊆B squash: T uimplies: supposing a decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e qrng: <ℚ+*> rng_plus: +r rng_zero: 0 itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  int_le_to_int_upper all_wf int_seg_wf rationals_wf le_wf less_than_wf qle_wf lelt_wf qsum_wf int_upper_wf int_upper_ind subtract_wf qle_reflexivity int-subtype-rationals squash_wf true_wf sum_unroll_base_q iff_weakening_equal int_upper_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformle_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf sum_unroll_hi_q decidable__le itermSubtract_wf int_term_value_subtract_lemma subtype_rel_dep_function int_seg_subtype subtype_rel_self grp_op_preserves_le_qorder qle_transitivity_qorder qadd_wf qadd_com qle_witness lt_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination sqequalRule lambdaEquality functionEquality setElimination rename because_Cache hypothesis intEquality applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation productElimination independent_functionElimination instantiate natural_numberEquality addEquality imageElimination equalityTransitivity equalitySymmetry independent_isectElimination imageMemberEquality baseClosed universeEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll isect_memberFormation baseApply closedConclusion equalityElimination

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E,F:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    \mSigma{}a  \mleq{}  j  <  b.  E[j]  \mleq{}  \mSigma{}a  \mleq{}  j  <  b.  F[j]  supposing  \mforall{}j:\mBbbZ{}.  ((a  \mleq{}  j)  {}\mRightarrow{}  j  <  b  {}\mRightarrow{}  (E[j]  \mleq{}  F[j]))



Date html generated: 2018_05_21-PM-11_59_43
Last ObjectModification: 2017_07_26-PM-06_48_55

Theory : rationals


Home Index