Nuprl Lemma : funtype-split

[T:Type]. ∀[n:ℕ]. ∀[m:ℕ1]. ∀[A:ℕn ⟶ Type].  (funtype(n;A;T) funtype(m;A;funtype(n m;λk.(A (k m));T)) ∈ Type)


Proof




Definitions occuring in Statement :  funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) funtype: funtype(n;A;T) squash: T le: A ≤ B uiff: uiff(P;Q) less_than: a < b subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  subtract_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf subtype_base_sq int_subtype_base ge_wf less_than_wf int_seg_wf add-zero primrec0_lemma funtype_wf squash_wf true_wf funtype-unroll-last-eq add-member-int_seg2 decidable__lt lelt_wf subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self iff_weakening_equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairFormation dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation intWeakElimination axiomEquality functionEquality universeEquality applyEquality imageElimination functionExtensionality imageMemberEquality baseClosed equalityElimination promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].
    (funtype(n;A;T)  =  funtype(m;A;funtype(n  -  m;\mlambda{}k.(A  (k  +  m));T)))



Date html generated: 2017_10_01-AM-08_39_46
Last ObjectModification: 2017_07_26-PM-04_27_42

Theory : untyped!computation


Home Index