Who Cites P causal? | |
P_causal | Def Causal(E)(tr) == i:||tr||. j:||tr||. ji & (is-send(E)(tr[j])) & (tr[j] =msg=(E) tr[i]) |
Thm* E:EventStruct. Causal(E) (|E| List)Prop | |
P_no_dup | Def No-dup-deliver(E)(tr) == i,j:||tr||. (is-send(E)(tr[i])) (is-send(E)(tr[j])) (tr[j] =msg=(E) tr[i]) loc(E)(tr[i]) = loc(E)(tr[j]) i = j |
Thm* E:EventStruct. No-dup-deliver(E) (|E| List)Prop | |
R_ad | Def adR(E) == (delayableR(E) asyncR(E))^* |
Thm* E:EventStruct. adR(E) (|E| List)(|E| List)Prop | |
R_async | Def asyncR(E) == swap adjacent[loc(E)(x) = loc(E)(y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))] |
Thm* E:EventStruct. asyncR(E) (|E| List)(|E| List)Prop | |
R_delayable | Def delayableR(E) == swap adjacent[(x =msg=(E) y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))] |
Thm* E:EventStruct. delayableR(E) (|E| List)(|E| List)Prop | |
memoryless_composable_safety | Def MCS(E)(P) == memorylessR(E) preserves P & (ternary) composableR(E) preserves P & safetyR(E) preserves P |
Thm* E:EventStruct. MCS(E) TraceProperty(E)Prop | |
tagged_event_str | Def TaggedEventStruct == E:TypeM:MessageStruct(E|M|)(ELabel)(E)(ELabel)Top |
Thm* TaggedEventStruct Type{i'} | |
tr_refines | Def P refines Q == tr:|E| List. P(tr) Q(tr) |
Thm* E:Structure, P,Q:((|E| List)Prop). (P refines Q) Prop | |
R_safety | Def safetyR(E)(tr_1,tr_2) == tr_2 tr_1 |
Thm* E:EventStruct. safetyR(E) (|E| List)(|E| List)Prop | |
R_composable | Def composableR(E)(L_1,L_2,L) == (xL_1.(yL_2.(x =msg=(E) y))) & L = (L_1 @ L_2) |E| List |
Thm* E:EventStruct. composableR(E) (|E| List)(|E| List)(|E| List)Prop | |
R_memoryless | Def memorylessR(E)(L_1,L_2) == a:|E|. L_2 = filter(b.(b =msg=(E) a);L_1) |E| List |
Thm* E:EventStruct. memorylessR(E) (|E| List)(|E| List)Prop | |
message_str | Def MessageStruct == M:TypeC:DecidableEquiv(M|C|)(MLabel)(M)Top |
Thm* MessageStruct Type{i'} | |
carrier | Def |S| == 1of(S) |
Thm* S:Structure. |S| Type | |
preserved_by | Def R preserves P == x,y:T. P(x) (x R y) P(y) |
Thm* T:Type, P:(TProp), R:(TTProp). R preserves P Prop | |
prop_and | Def (P Q)(L) == P(L) & Q(L) |
Thm* T:Type, P,Q:(TProp). (P Q) TProp | |
swap_adjacent | Def swap adjacent[P(x;y)](L1,L2) == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List |
Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop | |
swap | Def swap(L;i;j) == (L o (i, j)) |
Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List | |
l_all | Def (xL.P(x)) == x:T. (x L) P(x) |
Thm* T:Type, L:T List, P:(TProp). (xL.P(x)) Prop | |
permute_list | Def (L o f) == mklist(||L||;i.L[(f(i))]) |
Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List | |
l_member | Def (x l) == i:. i < ||l|| & x = l[i] T |
Thm* T:Type, x:T, l:T List. (x l) Prop | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
event_msg_eq | Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2)) |
Thm* E:EventStruct. =msg=(E) |E||E| | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
dequiv | Def DecidableEquiv == T:TypeE:TTEquivRel(T)((_1 E _2))Top |
Thm* DecidableEquiv Type{i'} | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
event_is_snd | Def is-send(E) == 1of(2of(2of(2of(2of(E))))) |
Thm* E:EventStruct. is-send(E) |E| | |
int_seg | Def {i..j} == {k:| i k < j } |
Thm* m,n:. {m..n} Type | |
rel_star | Def (R^*)(x,y) == n:. x R^n y |
Thm* T:Type, R:(TTProp). (R^*) TTProp | |
lelt | Def i j < k == ij & j < k |
nat | Def == {i:| 0i } |
Thm* Type | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
event_loc | Def loc(E) == 1of(2of(2of(2of(E)))) |
Thm* E:EventStruct. loc(E) |E|Label | |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
rel_or | Def (R1 R2)(x,y) == (x R1 y) (x R2 y) |
Thm* T:Type, R1,R2:(TTProp). (R1 R2) TTProp | |
event_msg | Def msg(E) == 1of(2of(2of(E))) |
Thm* E:EventStruct. msg(E) |E||MS(E)| | |
event_msg_str | Def MS(E) == 1of(2of(E)) |
Thm* E:EventStruct. MS(E) MessageStruct | |
msg_eq | Def =(M)(m_1,m_2) == ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2)))sender(M)(m_1) = sender(M)(m_2) (uid(M)(m_1)=uid(M)(m_2)) |
Thm* M:MessageStruct. =(M) |M||M| | |
msg_id | Def uid(MS) == 1of(2of(2of(2of(2of(MS))))) |
Thm* M:MessageStruct. uid(M) |M| | |
msg_sender | Def sender(MS) == 1of(2of(2of(2of(MS)))) |
Thm* M:MessageStruct. sender(M) |M|Label | |
msg_content | Def content(MS) == 1of(2of(2of(MS))) |
Thm* M:MessageStruct. content(M) |M||cEQ(M)| | |
msg_content_eq | Def cEQ(MS) == 1of(2of(MS)) |
Thm* M:MessageStruct. cEQ(M) DecidableEquiv | |
eq_dequiv | Def =(DE) == 1of(2of(DE)) |
Thm* E:DecidableEquiv. =(E) |E||E| | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
preserved_by2 | Def (ternary) R preserves P == x,y,z:T. P(x) P(y) R(x,y,z) P(z) |
Thm* T:Type, P:(TProp), R:(TTTProp). (ternary) R preserves P Prop | |
top | Def Top == Void given Void |
Thm* Top Type | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
rel_exp | Def R^n == if n=0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi (recursive) |
Thm* n:, T:Type, R:(TTProp). R^n TTProp | |
iseg | Def l1 l2 == l:T List. l2 = (l1 @ l) |
Thm* T:Type, l1,l2:T List. l1 l2 Prop | |
mklist | Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))]) |
Thm* T:Type, n:, f:(nT). mklist(n;f) T List | |
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
Thm* T:Type, as,bs:T List. (as @ bs) T List | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
filter | Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l) |
Thm* T:Type, P:(T), l:T List. filter(P;l) T List | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
flip | Def (i, j)(x) == if x=ij ;x=ji else x fi |
Thm* k:, i,j:k. (i, j) kk | |
primrec | Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive) |
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T | |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_default | Def Default = > body(value,value) == body |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case | Def Case(value) body == body(value,value) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B | |
equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y) |
Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop | |
sym | Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a) |
Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop | |
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop |
About: