WhoCites Definitions mb hybrid Sections GenAutomata Doc

Who Cites b switchable?
b_switchable Def switchable(E)(P) == safetyR(E) preserves P & memorylessR(E) preserves P & (ternary) composableR(E) preserves P & send-enabledR(E) preserves P & asyncR(E) preserves P & delayableR(E) preserves P & (P refines Causal(E)) & (P refines No-dup-deliver(E))
Thm* E:EventStruct. switchable(E) ((|E| List)Prop)Prop
fusion_condition Def I fuses P == tr:Trace(E). (m:Label. P( < tr > _m)) I(tr) P(tr)
Thm* E:TaggedEventStruct, I,P:TraceProperty(E). (I fuses P) Prop
no_duplicate_send Def No-dup-send(E)(tr) == i,j:||tr||. (is-send(E)(tr[i])) (is-send(E)(tr[j])) (tr[i] =msg=(E) tr[j]) i = j
Thm* E:EventStruct. No-dup-send(E) (|E| List)Prop
prop_and Def (P Q)(L) == P(L) & Q(L)
Thm* T:Type, P,Q:(TProp). (P Q) TProp
switch_inv Def switch_inv(E)(tr) == i,j,k:||tr||. i < j (is-send(E)(tr[i])) (is-send(E)(tr[j])) tag(E)(tr[i]) = tag(E)(tr[j]) tr[j] delivered at time k (k':||tr||. k' < k & tr[i] delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k]))
Thm* E:TaggedEventStruct. switch_inv(E) (|E| List)Prop
tagged_event_str Def TaggedEventStruct == E:TypeM:MessageStruct(E|M|)(ELabel)(E)(ELabel)Top
Thm* TaggedEventStruct Type{i'}
trace_property Def TraceProperty(E) == (|E| List)Prop
P_no_dup Def No-dup-deliver(E)(tr) == i,j:||tr||. (is-send(E)(tr[i])) (is-send(E)(tr[j])) (tr[j] =msg=(E) tr[i]) loc(E)(tr[i]) = loc(E)(tr[j]) i = j
Thm* E:EventStruct. No-dup-deliver(E) (|E| List)Prop
tr_refines Def P refines Q == tr:|E| List. P(tr) Q(tr)
Thm* E:Structure, P,Q:((|E| List)Prop). (P refines Q) Prop
P_causal Def Causal(E)(tr) == i:||tr||. j:||tr||. ji & (is-send(E)(tr[j])) & (tr[j] =msg=(E) tr[i])
Thm* E:EventStruct. Causal(E) (|E| List)Prop
R_delayable Def delayableR(E) == swap adjacent[(x =msg=(E) y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))]
Thm* E:EventStruct. delayableR(E) (|E| List)(|E| List)Prop
R_async Def asyncR(E) == swap adjacent[loc(E)(x) = loc(E)(y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))]
Thm* E:EventStruct. asyncR(E) (|E| List)(|E| List)Prop
R_send_enabled Def send-enabledR(E)(L_1,L_2) == x:|E|. (is-send(E)(x)) & L_2 = (L_1 @ [x])
Thm* E:EventStruct. send-enabledR(E) (|E| List)(|E| List)Prop
R_composable Def composableR(E)(L_1,L_2,L) == (xL_1.(yL_2.(x =msg=(E) y))) & L = (L_1 @ L_2) |E| List
Thm* E:EventStruct. composableR(E) (|E| List)(|E| List)(|E| List)Prop
R_memoryless Def memorylessR(E)(L_1,L_2) == a:|E|. L_2 = filter(b.(b =msg=(E) a);L_1) |E| List
Thm* E:EventStruct. memorylessR(E) (|E| List)(|E| List)Prop
R_safety Def safetyR(E)(tr_1,tr_2) == tr_2 tr_1
Thm* E:EventStruct. safetyR(E) (|E| List)(|E| List)Prop
str_trace Def Trace(E) == |E| List
message_str Def MessageStruct == M:TypeC:DecidableEquiv(M|C|)(MLabel)(M)Top
Thm* MessageStruct Type{i'}
carrier Def |S| == 1of(S)
Thm* S:Structure. |S| Type
preserved_by Def R preserves P == x,y:T. P(x) (x R y) P(y)
Thm* T:Type, P:(TProp), R:(TTProp). R preserves P Prop
preserved_by2 Def (ternary) R preserves P == x,y,z:T. P(x) P(y) R(x,y,z) P(z)
Thm* T:Type, P:(TProp), R:(TTTProp). (ternary) R preserves P Prop
tag_sublist Def < tr > _tg == filter(e.tag(E)(e) = tg;tr)
Thm* E:TaggedEventStruct, L:|E| List, t:Label. < L > _t |E| List
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
delivered_at Def x delivered at time k == (x =msg=(E) tr[k]) & (is-send(E)(tr[k]))
Thm* E:EventStruct, tr:|E| List, x:|E|, k:||tr||. x delivered at time k Prop
swap_adjacent Def swap adjacent[P(x;y)](L1,L2) == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List
Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop
l_all Def (xL.P(x)) == x:T. (x L) P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x)) Prop
swap Def swap(L;i;j) == (L o (i, j))
Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
permute_list Def (L o f) == mklist(||L||;i.L[(f(i))])
Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
event_msg_eq Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2))
Thm* E:EventStruct. =msg=(E) |E||E|
dequiv Def DecidableEquiv == T:TypeE:TTEquivRel(T)((_1 E _2))Top
Thm* DecidableEquiv Type{i'}
assert Def b == if b True else False fi
Thm* b:. b Prop
event_is_snd Def is-send(E) == 1of(2of(2of(2of(2of(E)))))
Thm* E:EventStruct. is-send(E) |E|
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
event_loc Def loc(E) == 1of(2of(2of(2of(E))))
Thm* E:EventStruct. loc(E) |E|Label
event_tag Def tag(E) == 1of(2of(2of(2of(2of(2of(E))))))
Thm* E:TaggedEventStruct. tag(E) |E|Label
lelt Def i j < k == ij & j < k
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
not Def A == A False
Thm* A:Prop. (A) Prop
top Def Top == Void given Void
Thm* Top Type
event_msg Def msg(E) == 1of(2of(2of(E)))
Thm* E:EventStruct. msg(E) |E||MS(E)|
event_msg_str Def MS(E) == 1of(2of(E))
Thm* E:EventStruct. MS(E) MessageStruct
msg_eq Def =(M)(m_1,m_2) == ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2)))sender(M)(m_1) = sender(M)(m_2) (uid(M)(m_1)=uid(M)(m_2))
Thm* M:MessageStruct. =(M) |M||M|
msg_id Def uid(MS) == 1of(2of(2of(2of(2of(MS)))))
Thm* M:MessageStruct. uid(M) |M|
msg_sender Def sender(MS) == 1of(2of(2of(2of(MS))))
Thm* M:MessageStruct. sender(M) |M|Label
msg_content Def content(MS) == 1of(2of(2of(MS)))
Thm* M:MessageStruct. content(M) |M||cEQ(M)|
msg_content_eq Def cEQ(MS) == 1of(2of(MS))
Thm* M:MessageStruct. cEQ(M) DecidableEquiv
eq_dequiv Def =(DE) == 1of(2of(DE))
Thm* E:DecidableEquiv. =(E) |E||E|
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
iseg Def l1 l2 == l:T List. l2 = (l1 @ l)
Thm* T:Type, l1,l2:T List. l1 l2 Prop
mklist Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))])
Thm* T:Type, n:, f:(nT). mklist(n;f) T List
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
bnot Def b == if b false else true fi
Thm* b:. b
filter Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l) T List
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
reduce Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive)
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case Def Case(value) body == body(value,value)
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
flip Def (i, j)(x) == if x=ij ;x=ji else x fi
Thm* k:, i,j:k. (i, j) kk
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)
Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop
sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)
Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop
refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

About:
spreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelseassert
voidintnatural_numberaddsubtractint_eqlessless_thanatom
tokenatom_equniondecide
setisectlambdaapplyfunctionrecursive_def_notice
recuniverseequalmembertoppropimpliesandorfalsetrue
allexists!abstraction

WhoCites Definitions mb hybrid Sections GenAutomata Doc