PrintForm
Definitions
myhill
nerode
Sections
AutomataTheory
Doc
At:
mn
23
lem
1
2
2
1
3
2
1
2
1
1
1
2
2
1.
Alph:
Type
2.
R:
Alph*
Alph*
Prop
3.
Fin(Alph)
4.
EquivRel x,y:Alph*. x R y
5.
Fin(x,y:Alph*//(x R y))
6.
x,y,z:Alph*. (x R y)
((z @ x) R (z @ y))
7.
g:
(x,y:Alph*//(x R y))
8.
Fin((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))
9.
a:Alph, x:x,y:Alph*//(x R y). a.x
x,y:Alph*//(x R y)
10.
fL:
((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
11.
< (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)),
a,xy. xy/x,y. < a.x,a.y > >
ActionSet(Alph)
12.
TBL:
((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
13.
x:
x,y:Alph*//(x R y)
14.
y:
x,y:Alph*//(x R y)
15.
mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)); < x,y > ;TBL)
(
w:Alph*.
(g(w@
x)) =
(g(w@
y)))
16.
mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)); < x,y > ;TBL)
(
w:Alph*.
(g(w@
x)) =
(g(w@
y)))
17.
w:
Alph*
18.
(g(w@
x)) =
(g(w@
y))
(g(w@
x)
g(w@
y))
By:
RWH assert_pushdownC -1
THEN
Analyze 0
THEN
Analyze -2
Generated subgoal:
1
18.
g(w@
x)
g(w@
y)
(g(w@
x)) =
(g(w@
y))
About: